Morphism.hs revision da955132262baab309a50fdffe228c9efe68251d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
{-# OPTIONS -fallow-undecidable-instances #-}
{- |
Module : $Header$
Description : Morphisms in Propositional logic
Copyright : (c) Dominik Luecke, Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : portable
Definition of morphisms for propositional logic
-}
{-
Ref.
Till Mossakowski, Joseph Goguen, Razvan Diaconescu, Andrzej Tarlecki.
What is a Logic?.
In Jean-Yves Beziau (Ed.), Logica Universalis, pp. 113-@133. Birkhaeuser.
2005.
-}
module Propositional.Morphism
(
Morphism (..) -- datatype for Morphisms
,pretty -- pretty printing
,idMor -- identity morphism
,isLegalMorphism -- check if morhpism is ok
,composeMor -- composition
,inclusionMap -- inclusion map
,mapSentence -- map of sentences
,applyMap -- application function for maps
) where
import qualified Data.Map as Map
import qualified Data.Set as Set
import Propositional.Sign as Sign
import qualified Common.Result as Result
import qualified Propositional.AS_BASIC_Propositional as AS_BASIC
import Common.Id as Id
import Common.Result
import Common.Doc
import Common.DocUtils
-- Maps are simple maps between elements of sets
-- By the definition of maps in Data.Map
-- these maps are injective
type PropMap = Map.Map Id Id
-- | The datatype for morphisms in propositional logic as
-- | simple injective maps of sets
data Morphism = Morphism
{
source :: Sign
, target :: Sign
, propMap :: PropMap
} deriving (Eq, Show)
instance Pretty Morphism where
pretty = printMorphism
-- | Constructs an id-morphism as the diagonal
idMor :: Sign -> Morphism
idMor a = Morphism
{ source = a
, target = a
, propMap = makeIdMor $ items a
}
where
-- | Determines whether a morphism is valid
isLegalMorphism :: Morphism -> Bool
isLegalMorphism pmor =
let
psource = items $ source pmor
ptarget = items $ target pmor
pdom = Map.keysSet $ propMap pmor
pcodom = Set.map (applyMorphism pmor) $ psource
in
Set.isSubsetOf pcodom ptarget && Set.isSubsetOf pdom psource
-- | Application funtion for morphisms
applyMorphism :: Morphism -> Id -> Id
applyMorphism mor idt = Map.findWithDefault idt idt $ propMap mor
-- | Application function for propMaps
applyMap :: PropMap -> Id -> Id
applyMap pmap idt = Map.findWithDefault idt idt pmap
-- | Composition of morphisms in propositional Logic
composeMor :: Morphism -> Morphism -> Result Morphism
composeMor f g
| fTarget /= gSource = fail "Morphisms are not composable"
| otherwise = return Morphism
{
source = fSource
, target = gTarget
, propMap = if Map.null gMap then fMap else
Set.fold ( \ i ->
let j = applyMap gMap (applyMap fMap i) in
if i == j then id else Map.insert i j)
Map.empty $ items fSource
}
where
fSource = source f
fTarget = target f
gSource = source g
gTarget = target g
fMap = propMap f
gMap = propMap g
-- | Pretty printing for Morphisms
printMorphism :: Morphism -> Doc
printMorphism m = pretty (source m) <> text "-->" <> pretty (target m)
<> vcat (map ( \ (x, y) -> lparen <> pretty x <> text ","
<> pretty y <> rparen) $ Map.assocs $ propMap m)
-- | Inclusion map of a subsig into a supersig
inclusionMap s1 s2
|isSub = Result.Result
{
diags = [Diag
{
, Result.diagString = "All fine"
, diagPos = Id.nullRange
}]
, maybeResult = Just $ Morphism
{
source = s1
, target = s2
, propMap = Set.fold (\x -> Map.insert x x)
Map.empty (Sign.items s1)
}
}
| otherwise = Result.Result
{
diags = [Diag
{
, Result.diagString = errorStr
, diagPos = Id.nullRange
}]
, maybeResult = Nothing
}
where
isSub = Sign.isSubSigOf s1 s2
errorStr = (show $ pretty s1) ++ " is not subset of " ++ (show $ pretty s2)
-- | gets simple Id
getSimpleId (Id toks _ _) = toks
-- | sentence translation along signature morphism
-- here just the renaming of formulae
mapSentence mor form = Result.Result
{
diags = [Diag
{
, Result.diagString = "All fine mapSentence"
, diagPos = Id.nullRange
}]
, maybeResult = Just $ mapSentenceH mor form
}
mapSentenceH :: Morphism -> AS_BASIC.FORMULA -> AS_BASIC.FORMULA
mapSentenceH mor (AS_BASIC.Negation form rn) = AS_BASIC.Negation (mapSentenceH mor form) rn
mapSentenceH mor (AS_BASIC.Conjunction form rn) = AS_BASIC.Conjunction (map (mapSentenceH mor) form) rn
mapSentenceH mor (AS_BASIC.Disjunction form rn) = AS_BASIC.Disjunction (map (mapSentenceH mor) form) rn
mapSentenceH mor (AS_BASIC.Implication form1 form2 rn) = AS_BASIC.Implication (mapSentenceH mor form1)
(mapSentenceH mor form2) rn
mapSentenceH mor (AS_BASIC.Equivalence form1 form2 rn) = AS_BASIC.Equivalence (mapSentenceH mor form1)
(mapSentenceH mor form2) rn
mapSentenceH _ (AS_BASIC.True_atom rn) = AS_BASIC.True_atom rn
mapSentenceH _ (AS_BASIC.False_atom rn) = AS_BASIC.False_atom rn
mapSentenceH mor (AS_BASIC.Predication predH) = AS_BASIC.Predication (head $ getSimpleId $
(applyMorphism mor $ Id.simpleIdToId predH))