Morphism.hs revision 59917a4f0a6a20f5a20bcab1f2a0a0774db56807
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
{-# OPTIONS -fallow-undecidable-instances #-}
{- |
Module : $Header$
Description : Instance of class Logic for propositional logic
Copyright : (c) Dominik Luecke, Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@tzi.de
Stability : experimental
Portability : portable
Definition of morphisms for propositional logic
-}
{-
Ref.
Till Mossakowski, Joseph Goguen, Razvan Diaconescu, Andrzej Tarlecki.
What is a Logic?.
In Jean-Yves Beziau (Ed.), Logica Universalis, pp. 113-@133. Birkhäuser.
2005.
-}
module Propositional.Morphism
(
Morphism (..) -- datatype for Morphisms
,pretty -- pretty printing
,idMor -- identity morphism
,isLegalMorphism -- check if morhpism is ok
,composeMor -- composition
) where
import qualified Data.Map as Map
import qualified Data.Set as Set
import Propositional.Sign as Sign
import Common.Id
import Common.Result
import Common.Doc
import Common.DocUtils
import Data.Typeable
import Common.ATerm.Conversion
-- Maps are simple maps between elements of sets
-- By the definition of maps in Common.Lib.Map
-- these maps are injective
type PropMap = Map.Map Id Id
-- | The datatype for morphisms in propositional logic as
-- | simple injective maps of sets
data Morphism = Morphism
{
source :: Sign
, target :: Sign
, propMap :: PropMap
} deriving (Eq, Show)
instance Pretty Morphism where
pretty = printMorphism
instance Typeable Morphism
instance ShATermConvertible Morphism
-- | Constructs an id-morphism as the diagonal
idMor :: Sign -> Morphism
idMor a = Morphism
{ source = a
, target = a
, propMap = makeIdMor $ items a
}
where
-- | Determines whether a morphism is valid
-- since all maps from sets to sets are ok,
-- this value is glued to true
isLegalMorphism :: Morphism -> Bool
isLegalMorphism _ = True
-- | Composition of morphisms in propositional Logic
-- possibly there are far better way to solve this,
-- but I am jsut a n00b :)
composeMor :: Morphism -> Morphism -> Result Morphism
composeMor f g
| fTarget /= gSource = fail "Morphisms are not composable"
| otherwise = return Morphism
{
source = fSource
, target = gTarget
, propMap = composeHelper fassoc gMap Map.empty
}
where
fSource = source f
fTarget = target f
gSource = source g
gTarget = target g
fMap = propMap f
gMap = propMap g
fassoc = Map.assocs fMap
composeHelper :: (Ord a, Ord k, Ord b) => [(k, a)] -> Map.Map a b
composeHelper [] _ newMor = newMor
composeHelper ((k, a):xs) h newMor =
case Map.lookup a h of
Nothing -> composeHelper xs h newMor
Just v -> composeHelper xs h (Map.insert k v newMor)
-- | Pretty printing for Morphisms
printMorphism :: Morphism -> Doc
printMorphism m = pretty (source m) <> text "-->" <> pretty (target m)
<> vcat (map ( \ (x, y) -> lparen <> idDoc x <> text ","
<> idDoc y <> rparen) $ Map.assocs $ propMap m)