Morphism.hs revision 548f3850942936a8c6021185c8391dfcd3b03018
{-# OPTIONS -fallow-undecidable-instances #-}
{- |
Module : $Header$
Description : Instance of class Logic for propositional logic
Copyright : (c) Dominik Luecke, Uni Bremen 2007
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@tzi.de
Stability : experimental
Portability : portable
Definition of morphisms for propositional logic
-}
{-
Ref.
Till Mossakowski, Joseph Goguen, Razvan Diaconescu, Andrzej Tarlecki.
What is a Logic?.
In Jean-Yves Beziau (Ed.), Logica Universalis, pp. 113-@133. Birkhäuser.
2005.
-}
module Propositional.Morphism
(
Morphism (..) -- datatype for Morphisms
,pretty -- pretty printing
,idMor -- identity morphism
,isLegalMorphism -- check if morhpism is ok
,composeMor -- composition
) where
import qualified Data.Map as Map
import qualified Data.Set as Set
import Propositional.Sign as Sign
import Common.Id
import Common.Result
import Common.Doc
import Common.DocUtils
-- Maps are simple maps between elements of sets
-- By the definition of maps in Data.Map
-- these maps are injective
type PropMap = Map.Map Id Id
-- | The datatype for morphisms in propositional logic as
-- | simple injective maps of sets
data Morphism = Morphism
{
source :: Sign
, target :: Sign
, propMap :: PropMap
} deriving (Eq, Show)
instance Pretty Morphism where
pretty = printMorphism
-- | Constructs an id-morphism as the diagonal
idMor :: Sign -> Morphism
idMor a = Morphism
{ source = a
, target = a
, propMap = makeIdMor $ items a
}
where
-- | Determines whether a morphism is valid
isLegalMorphism :: Morphism -> Bool
isLegalMorphism pmor =
let
psource = items $ source pmor
ptarget = items $ target pmor
pdom = Map.keysSet $ propMap pmor
pcodom = Set.map (applyMorphism pmor) $ psource
in
Set.isSubsetOf pcodom ptarget && Set.isSubsetOf pdom psource
-- | Application funtion for morphisms
applyMorphism :: Morphism -> Id -> Id
applyMorphism mor idt = Map.findWithDefault idt idt $ propMap mor
-- | Application function for propMaps
applyMap :: PropMap -> Id -> Id
applyMap pmap idt = Map.findWithDefault idt idt pmap
-- | Composition of morphisms in propositional Logic
composeMor :: Morphism -> Morphism -> Result Morphism
composeMor f g
| fTarget /= gSource = fail "Morphisms are not composable"
| otherwise = return Morphism
{
source = fSource
, target = gTarget
, propMap = if Map.null gMap then fMap else
Set.fold ( \ i ->
let j = applyMap gMap (applyMap fMap i) in
if i == j then id else Map.insert i j)
Map.empty $ items fSource
}
where
fSource = source f
fTarget = target f
gSource = source g
gTarget = target g
fMap = propMap f
gMap = propMap g
-- | Pretty printing for Morphisms
printMorphism :: Morphism -> Doc
printMorphism m = pretty (source m) <> text "-->" <> pretty (target m)
<> vcat (map ( \ (x, y) -> lparen <> pretty x <> text ","
<> pretty y <> rparen) $ Map.assocs $ propMap m)