AS_BASIC_Propositional.der.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : Abstract syntax for propositional logic
Copyright : (c) Dominik Luecke, Uni Bremen 2007
License : GPLv2 or higher, see LICENSE.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : experimental
Portability : portable
Definition of abstract syntax for propositional logic
-}
{-
Ref.
http://en.wikipedia.org/wiki/Propositional_logic
-}
module Propositional.AS_BASIC_Propositional
( FORMULA (..) -- datatype for Propositional Formulas
, BASIC_ITEMS (..) -- Items of a Basic Spec
, BASIC_SPEC (..) -- Basic Spec
, SYMB_ITEMS (..) -- List of symbols
, SYMB (..) -- Symbols
, SYMB_MAP_ITEMS (..) -- Symbol map
, SYMB_OR_MAP (..) -- Symbol or symbol map
, PRED_ITEM (..) -- Predicates
, isPrimForm
) where
import Common.Id as Id
import Common.Doc
import Common.DocUtils
import Common.Keywords
import Common.AS_Annotation as AS_Anno
-- DrIFT command
{-! global: GetRange !-}
-- | predicates = propotions
data PRED_ITEM = Pred_item [Id.Token] Id.Range
deriving Show
newtype BASIC_SPEC = Basic_spec [AS_Anno.Annoted (BASIC_ITEMS)]
deriving Show
data BASIC_ITEMS =
Pred_decl PRED_ITEM
| Axiom_items [AS_Anno.Annoted (FORMULA)]
-- pos: dots
deriving Show
-- | Datatype for propositional formulas
data FORMULA =
False_atom Id.Range
-- pos: "False
| True_atom Id.Range
-- pos: "True"
| Predication Id.Token
-- pos: Propositional Identifiers
| Negation FORMULA Id.Range
-- pos: not
| Conjunction [FORMULA] Id.Range
-- pos: "/\"s
| Disjunction [FORMULA] Id.Range
-- pos: "\/"s
| Implication FORMULA FORMULA Id.Range
-- pos: "=>"
| Equivalence FORMULA FORMULA Id.Range
-- pos: "<=>"
deriving (Show, Eq, Ord)
data SYMB_ITEMS = Symb_items [SYMB] Id.Range
-- pos: SYMB_KIND, commas
deriving (Show, Eq)
newtype SYMB = Symb_id Id.Token
-- pos: colon
deriving (Show, Eq)
data SYMB_MAP_ITEMS = Symb_map_items [SYMB_OR_MAP] Id.Range
-- pos: SYMB_KIND, commas
deriving (Show, Eq)
data SYMB_OR_MAP = Symb SYMB
| Symb_map SYMB SYMB Id.Range
-- pos: "|->"
deriving (Show, Eq)
-- All about pretty printing
-- we chose the easy way here :)
instance Pretty FORMULA where
pretty = printFormula
instance Pretty BASIC_SPEC where
pretty = printBasicSpec
instance Pretty SYMB where
pretty = printSymbol
instance Pretty SYMB_ITEMS where
pretty = printSymbItems
instance Pretty SYMB_MAP_ITEMS where
pretty = printSymbMapItems
instance Pretty BASIC_ITEMS where
pretty = printBasicItems
instance Pretty SYMB_OR_MAP where
pretty = printSymbOrMap
instance Pretty PRED_ITEM where
pretty = printPredItem
isPrimForm :: FORMULA -> Bool
isPrimForm f = case f of
True_atom _ -> True
False_atom _ -> True
Predication _ -> True
Negation _ _ -> True
_ -> False
-- Pretty printing for formulas
printFormula :: FORMULA -> Doc
printFormula frm =
let ppf p f = (if p f then id else parens) $ printFormula f
isJunctForm f = case f of
Implication _ _ _ -> False
Equivalence _ _ _ -> False
_ -> True
in case frm of
False_atom _ -> text falseS
True_atom _ -> text trueS
Predication x -> pretty x
Negation f _ -> notDoc <+> ppf isPrimForm f
Conjunction xs _ -> sepByArbitrary andDoc $ map (ppf isPrimForm) xs
Disjunction xs _ -> sepByArbitrary orDoc $ map (ppf isPrimForm) xs
Implication x y _ -> ppf isJunctForm x <+> implies <+> ppf isJunctForm y
Equivalence x y _ -> ppf isJunctForm x <+> equiv <+> ppf isJunctForm y
sepByArbitrary :: Doc -> [Doc] -> Doc
sepByArbitrary d = fsep . prepPunctuate (d <> space)
printPredItem :: PRED_ITEM -> Doc
printPredItem (Pred_item xs _) = fsep $ map pretty xs
printBasicSpec :: BASIC_SPEC -> Doc
printBasicSpec (Basic_spec xs) = vcat $ map pretty xs
printBasicItems :: BASIC_ITEMS -> Doc
printBasicItems (Axiom_items xs) = vcat $ map pretty xs
printBasicItems (Pred_decl x) = pretty x
printSymbol :: SYMB -> Doc
printSymbol (Symb_id sym) = pretty sym
printSymbItems :: SYMB_ITEMS -> Doc
printSymbItems (Symb_items xs _) = fsep $ map pretty xs
printSymbOrMap :: SYMB_OR_MAP -> Doc
printSymbOrMap (Symb sym) = pretty sym
printSymbOrMap (Symb_map source dest _) =
pretty source <+> mapsto <+> pretty dest
printSymbMapItems :: SYMB_MAP_ITEMS -> Doc
printSymbMapItems (Symb_map_items xs _) = fsep $ map pretty xs