StatusUtils.hs revision e9458b1a7a19a63aa4c179f9ab20f4d50681c168
{- |
Module : ./Proofs/StatusUtils.hs
Description : the proof status with manipulating functions
Copyright : (c) Jorina F. Gerken, Till Mossakowski, Uni Bremen 2002-2006
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable(Logic)
the proof status with manipulating functions
-}
module Proofs.StatusUtils
( lookupHistory
, removeContraryChanges
, isIdentityEdge
) where
import Static.DevGraph
import Data.Graph.Inductive.Graph
import Common.LibName
import Logic.Logic
import qualified Common.Lib.SizedList as SizedList
import Data.List
{-
proof status = (DG0,[(R1,DG1),...,(Rn,DGn)])
DG0 is the development graph resulting from the static analysis
Ri is a list of rules that transforms DGi-1 to DGi
With the list of intermediate proof states, one can easily implement
an undo operation
-}
-- * methods used in several proofs
-- | returns the history that belongs to the given library name
lookupHistory :: LibName -> LibEnv -> ProofHistory
lookupHistory ln = clearHist . proofHistory . lookupDGraph ln
-- | clear label lock
clr :: DGNodeLab -> DGNodeLab
clr l = l { dgn_lock = Nothing }
clearLock :: DGChange -> DGChange
clearLock c = case c of
InsertNode (n, l) -> InsertNode (n, clr l)
DeleteNode (n, l) -> InsertNode (n, clr l)
SetNodeLab o (n, l) -> SetNodeLab (clr o) (n, clr l)
_ -> c
clearHist :: ProofHistory -> ProofHistory
clearHist = SizedList.map clearElem
clearElem :: HistElem -> HistElem
clearElem e = case e of
HistElem c -> HistElem $ clearLock c
HistGroup r h -> HistGroup r $ clearHist h
-- * methods that keep the change list clean
{- | remove the contray changes out of the list if it's necessary,
so that the list can stay clean. -}
removeContraryChanges :: [DGChange] -> [DGChange]
removeContraryChanges cs = case cs of
[] -> []
c1 : r -> let recurse = c1 : removeContraryChanges r in case c1 of
SetNodeLab oldLbl (n, _) -> let
(r1, r2) = break (\ c2 -> case c2 of
SetNodeLab _ (m, _) -> n == m
DeleteNode (m, _) -> n == m
_ -> False) r
in case r2 of
[] -> recurse
c2 : r3 -> removeContraryChanges $ r1 ++ case c2 of
SetNodeLab _ (_, lbl) -> SetNodeLab oldLbl (n, lbl) : r3
DeleteNode _ -> DeleteNode (n, oldLbl) : r3
_ -> r2
InsertNode (n, _) -> let
(r1, r2) = break (\ c2 -> case c2 of
DeleteNode (m, _) -> n == m
_ -> False) r
(r1a, r1b) = partition (\ c2 -> case c2 of
SetNodeLab _ (m, _) -> n == m
_ -> False) r1
in case r2 of
[] -> case reverse r1a of
SetNodeLab _ (_, lbl) : _ ->
InsertNode (n, lbl) : removeContraryChanges r1b
_ -> recurse
_ : r3 -> removeContraryChanges $
filter (\ c2 -> case c2 of
InsertEdge (s, t, _) -> s /= n && t /= n
DeleteEdge (s, t, _) -> s /= n && t /= n
_ -> True) r1b ++ r3
DeleteNode (n, oldLbl) -> let
(r1, r2) = break (\ c2 -> case c2 of
InsertNode (m, _) -> n == m
_ -> False) r
in case r2 of
InsertNode (_, lbl) : r3 ->
removeContraryChanges $ r1 ++ SetNodeLab oldLbl (n, lbl) : r3
_ -> recurse
InsertEdge e1 -> let
(r1, r2) = break (\ c2 -> case c2 of
DeleteEdge e2 -> eqDGLEdge e1 e2
_ -> False) r
in case r2 of
[] -> recurse
_ : r3 -> removeContraryChanges $ r1 ++ r3
DeleteEdge e1 -> let
(r1, r2) = break (\ c2 -> case c2 of
InsertEdge e2 -> eqDGLEdge e1 e2
_ -> False) r
in case r2 of
[] -> recurse
_ : r3 -> removeContraryChanges $ r1 ++ r3
eqDGLEdge :: LEdge DGLinkLab -> LEdge DGLinkLab -> Bool
eqDGLEdge (s1, t1, l1) (s2, t2, l2) = (s1, t1) == (s2, t2)
&& eqDGLinkLabContent l1 l2
{- | check if the given edge is an identity edge, namely a loop
from a node to itself with an identity morphism. -}
isIdentityEdge :: LEdge DGLinkLab -> LibEnv -> DGraph -> Bool
isIdentityEdge (src, tgt, edgeLab) ps dgraph =
let nodeLab = labDG dgraph src
gsig = dgn_sign nodeLab
res = src == tgt &&
dgl_morphism edgeLab == ide gsig
in if isDGRef nodeLab then -- just a consistency check
let dg = lookupDGraph (dgn_libname nodeLab) ps
gsig2 = dgn_sign $ labDG dg $ dgn_node nodeLab
in if gsig2 == gsig then res else error "isIdentityEdge"
else res