DGFlattening.hs revision ea8e98e298f33f9362293f392c8fb192722b8904
{- |
Module : $Header$
Description : flattening parts of development graphs
Copyright : (c) Igor Stassiy, DFKI Bremen 2008
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : non-portable(Logic)
In this module we introduce flattening of the graph:
Flattening importings - deleting all inclusion links,
and inserting a new node, with new computed theory (computeTheory).
Flattening non-disjoint unions - for each node with more than two importings
modify importings in such a way that at each level, only non-disjoint
signatures are imported.
Flattening renaming - deterimining renaming link,
inserting a new node with the renaming morphism applied to theory of a
source, deleting the link and setting a new inclusion link between a
new node and the target node.
Flattening hiding links - for each compute normal form if there is such
and eliminate hiding links.
Flattening heterogeneity - for each heterogeneous link, compute theory of
a target node and eliminate heterogeneous link.
-}
module Proofs.DGFlattening
( dgFlatImports
, libFlatImports -- importing
, dgFlatDUnions
, libFlatDUnions -- non-disjoint unions
, dgFlatRenamings
, libFlatRenamings -- import with renaming
, dgFlatHiding
, libFlatHiding -- hiding
, dgFlatHeterogen
, libFlatHeterogen -- heterogeniety
, singleTreeFlatDUnions
) where
import Common.ExtSign
import Common.Id
import Common.IRI (simpleIdToIRI)
import Common.LibName
import Common.Result
import Comorphisms.LogicGraph
import Logic.Coerce
import Logic.Grothendieck
import Logic.Logic
import Proofs.EdgeUtils
import Proofs.NormalForm
import Static.ComputeTheory
import Static.DevGraph
import Static.DgUtils
import Static.GTheory
import Static.History
import Data.Graph.Inductive.Graph hiding (empty)
import Data.List
import Data.Maybe
import qualified Data.Map as Map
import qualified Data.Set as Set
mkFlatStr :: String -> DGRule
mkFlatStr = DGRule . ("Flat " ++)
flatImports :: DGRule
flatImports = mkFlatStr "all imports"
flatNonDisjUnion :: DGRule
flatNonDisjUnion = mkFlatStr "non-disjoint union"
flatRename :: DGRule
flatRename = mkFlatStr "renaming"
flatHide :: DGRule
flatHide = mkFlatStr "hiding"
flatHet :: DGRule
flatHet = mkFlatStr "heterogeneity"
cErr :: String -> Node -> a
cErr str n = error $ str ++ " no global theory for node " ++ show n
-- this function performs flattening of import links
dgFlatImports :: LibEnv -> LibName -> DGraph -> DGraph
dgFlatImports libEnv ln dg = let
nds = nodesDG dg
-- part for dealing with the graph itself
updLib = updateLib libEnv ln nds
updDG = lookupDGraph ln updLib
-- it seems changes of the labels are lost and all edges are simply deleted
n_dg = changesDGH dg $ map DeleteEdge $ labEdgesDG updDG
in groupHistory dg flatImports n_dg
where
updateNode :: LibEnv -> LibName -> Node -> DGChange
updateNode lib_Env l_n n =
let
labRf = labDG (lookupDGraph l_n lib_Env) n
{- have to consider references here. computeTheory is applied
to the node at the end of the chain of references only. -}
in case computeTheory lib_Env l_n n of
Just ndgn_theory ->
SetNodeLab labRf (n, labRf {dgn_theory = ndgn_theory})
Nothing ->
cErr "dgFlatImports" n
updateLib :: LibEnv -> LibName -> [Node] -> LibEnv
updateLib lib_Env l_n nds =
case nds of
[] -> lib_Env
hd : tl -> let
change = updateNode lib_Env l_n hd
ref_dg = lookupDGraph l_n lib_Env
u_dg = changeDGH ref_dg change
new_dg = groupHistory ref_dg flatImports u_dg
in
updateLib (Map.insert l_n new_dg lib_Env) l_n tl
-- this function performs flattening of imports for the whole library
libFlatImports :: LibEnv -> Result LibEnv
libFlatImports lib = return $ Map.mapWithKey (dgFlatImports lib) lib
{- this function performs flattening of imports with renamings
links for a given developement graph -}
dgFlatRenamings :: LibEnv -> LibName -> DGraph -> DGraph
dgFlatRenamings lib_Env l_n dg =
let
l_edges = labEdgesDG dg
renamings = filter (\ (_, _, x) -> let l_type = getRealDGLinkType x in
case l_type of
DGEdgeType { edgeTypeModInc = GlobalDef, isInc = False} -> True
_ -> False ) l_edges
fin_dg = applyUpdDG renamings dg
{- no need to care about references as each node
is preserved during flattening. -}
in computeDGraphTheories lib_Env fin_dg
where
updateDGWithChanges :: LEdge DGLinkLab -> DGraph -> DGraph
updateDGWithChanges l_edg@( v1, v2, label) d_graph =
let
-- update nodes
lv1 = labDG d_graph v1
lv2 = labDG d_graph v2
name = dgn_name lv1
n_node = getNewNodeDG d_graph
nlv1 = case computeTheory lib_Env l_n v1 of
Just n_dgn_theory -> lv1 {dgn_theory = n_dgn_theory }
Nothing -> cErr "dgFlatRenamings1" v1
nlv2 = case computeTheory lib_Env l_n v2 of
Just n_dgn_theory -> lv2 {dgn_theory = n_dgn_theory }
Nothing -> cErr "dgFlatRenamings2" v2
n_lnode@(_, n_lv) = propagateErrors "dgFlatRenamings3" $ do
t_dgn_theory <- translateG_theory (dgl_morphism label)
$ dgn_theory nlv1
return (n_node, newInfoNodeLab name
(newNodeInfo DGFlattening)
t_dgn_theory)
-- create edge
sign_source = signOf $ dgn_theory n_lv
sign_target = signOf $ dgn_theory lv2
n_edg = do
ng_morphism <- ginclusion logicGraph sign_source sign_target
return (n_node,
v2,
label { dgl_morphism = ng_morphism,
dgl_type = globalDef ,
dgl_origin = DGLinkFlatteningRename,
dgl_id = defaultEdgeId })
change_dg = [SetNodeLab lv1 (v1, nlv1),
SetNodeLab lv2 (v2, nlv2),
DeleteEdge l_edg,
InsertNode n_lnode,
InsertEdge (propagateErrors "dgFlatRenamings4" n_edg)]
in
changesDGH d_graph change_dg
applyUpdDG :: [LEdge DGLinkLab] -> DGraph -> DGraph
applyUpdDG l_list d_g = case l_list of
[] -> d_g
hd : tl -> let
dev_g = updateDGWithChanges hd d_g
in applyUpdDG tl $ groupHistory d_g flatRename dev_g
-- this function performs flattening of imports with renamings
libFlatRenamings :: LibEnv -> Result LibEnv
libFlatRenamings lib = return $ Map.mapWithKey (dgFlatRenamings lib) lib
-- this function performs flattening of hiding links
dgFlatHiding :: DGraph -> DGraph
dgFlatHiding dg = let
hids = filter (\ (_, _, x) -> (case dgl_type x of
HidingDefLink -> True
_ -> False)) $ labEdgesDG dg
{- no need to care about references either, as nodes are preserved
after flattening, as well as references. -}
n_dg = changesDGH dg $ map DeleteEdge hids
in groupHistory dg flatHide n_dg
-- this function performs flattening of heterogeniety for the whole library
libFlatHiding :: LibEnv -> Result LibEnv
libFlatHiding = fmap (Map.map dgFlatHiding) . normalFormLibEnv
{- this function performs flattening of heterogeniety
for a given developement graph -}
dgFlatHeterogen :: LibEnv -> LibName -> DGraph -> DGraph
dgFlatHeterogen libEnv ln dg = let
het_comorph = filter
(\ (_, _, x) -> not $ isHomogeneous $ dgl_morphism x) $ labEdgesDG dg
het_del_changes = map DeleteEdge het_comorph
updLib = updateNodes libEnv ln . Set.toList . Set.fromList
$ map ( \ (_, t, l) -> (t, isDefEdge $ dgl_type l)) het_comorph
udg = lookupDGraph ln updLib
ndg = changesDGH udg het_del_changes
in groupHistory udg flatHet ndg
where
updateNodes :: LibEnv -> LibName -> [(Node, Bool)] -> LibEnv
updateNodes lib_Env l_n nds = case nds of
[] -> lib_Env
(hd, isHetDef) : tl -> let
{- have to consider references here. The global theory is taken as
local one at the end of the reference chain. -}
(lname, odg, (nd, labRf)) =
lookupRefNode lib_Env l_n (lookupDGraph l_n lib_Env) hd
change = case globalTheory labRf of
Just ndgn_theory ->
SetNodeLab labRf (nd, labRf {dgn_theory = ndgn_theory})
Nothing -> cErr "dgFlatHeterogen" nd
cdg = changeDGH odg change
n_dg = groupHistory odg flatHet cdg
in updateNodes (if isHetDef then Map.insert lname n_dg lib_Env
else lib_Env) l_n tl
-- this function performs flattening of heterogeniety for the whole library
libFlatHeterogen :: LibEnv -> Result LibEnv
libFlatHeterogen lib =
return $ Map.mapWithKey (dgFlatHeterogen lib) lib
{- this function performs flattening of non-disjoint unions for the given
DGraph -}
dgFlatDUnions :: LibEnv -> DGraph -> DGraph
dgFlatDUnions le dg =
let
all_nodes = nodesDG dg
imp_nds = filter (\ x -> length (innDG dg x) > 1) all_nodes
{- lower_nodes = filter (\ x -> (outDG dg x == [])) (nodesDG dg)
as previously, no need to care about reference nodes,
as previous one remain same. -}
in computeDGraphTheories le $ applyToAllNodes dg imp_nds
-- this funciton given a list og G_sign returns intersection of them
getIntersectionOfAll :: [G_sign] -> G_sign
getIntersectionOfAll signs =
case signs of
[] -> error "getIntersectionOfAll1: empty signatures list"
[hd] -> hd
G_sign lid1 extSign1 _ : G_sign lid2 (ExtSign signtr2 _) _ : tl -> let
n_signtr = propagateErrors "getIntersectionOfAll2" $ do
ExtSign sign1 _ <- coerceSign lid1
lid2
"getIntersectionOfAll"
extSign1
n_sign <- intersection lid2 sign1 signtr2
return $ G_sign lid2 (mkExtSign n_sign) startSigId
in
if n_signtr == emptyG_sign (Logic lid2) then n_signtr
else getIntersectionOfAll (n_signtr : tl)
{- this function given a list of all possible combinations of nodes
of a given length -}
getAllCombinations :: Int -> [Node] -> [[Node]]
getAllCombinations 0 _ = [ [] ]
getAllCombinations n xs = [ y : ys | y : xs' <- tails xs
, ys <- getAllCombinations (n - 1) xs']
-- tells if two lists are equal or one contained in the other
containedInList :: [Node] -> [Node] -> Bool
containedInList l1 l2 = all (`elem` l2) l1
-- attach new nodes to the level
attachNewNodes :: [([Node], G_sign)] -> Int -> [([Node], Node, G_sign)]
attachNewNodes [] _ = []
attachNewNodes ((hd, sg) : tl) n = (hd, n, sg) : attachNewNodes tl (n + 1)
-- search for a match for a given combination in a level
searchForMatch :: [Node] -> [([Node], Node, G_sign)]
-> Maybe ([Node], Node, G_sign)
searchForMatch _ [] = Nothing
searchForMatch l (tripl@(nds, _, _) : tl) =
if containedInList l nds then Just tripl else searchForMatch l tl
{- take a combination of nodes, previous level,
and get the signature for the next level -}
matchCombinations :: [Node] -> [([Node], Node, G_sign)]
-> Maybe ([Node], G_sign)
matchCombinations [] _ = Nothing
matchCombinations ([_]) _ = Nothing
matchCombinations l@(hd1 : hd2 : tl) trpls =
case searchForMatch (hd1 : tl) trpls of
Nothing -> Nothing
Just (_, _, gsig1@(G_sign lid _ _)) ->
case searchForMatch (hd2 : tl) trpls of
Nothing -> Nothing
Just (_, _, gsig2) ->
let
n_sig = getIntersectionOfAll [gsig1, gsig2]
in
if n_sig == emptyG_sign (Logic lid) then Nothing
else Just (l, n_sig)
-- for a dg and a level, create labels for the new nodes
createLabels :: DGraph -> [([Node], Node, G_sign)] -> [LNode DGNodeLab]
createLabels dg tripls = case tripls of
[] -> error "createLabels: empty list on input"
_ -> let
labels = map (\ (x, y, G_sign lid (ExtSign sign symb) ind) -> let
-- name intersection by interspersing a string for a SimpleId
s_id = mkSimpleId . intercalate "'"
$ map (`getNameOfNode` dg) x
n_theory = noSensGTheory lid (ExtSign sign symb) ind
n_name = makeName $ simpleIdToIRI s_id
n_info = newNodeInfo DGFlattening
in
(y, newInfoNodeLab n_name n_info n_theory)) tripls
in labels
-- create links connecting given node with a list of nodes
createLinks :: DGraph -> LNode DGNodeLab -> [Node] -> DGraph
createLinks dg _ [] = dg
createLinks dg (nd, lb) (hd : tl) =
let
sign_source = signOf (dgn_theory lb)
sign_target = signOf (dgn_theory $ labDG dg hd)
n_edg = propagateErrors "DGFlattening.createLinks" $ do
ng_morphism <- ginclusion logicGraph sign_source sign_target
return (nd, hd, globDefLink ng_morphism DGLinkFlatteningUnion)
u_dg = case tryToGetEdge n_edg dg of
Nothing -> changeDGH dg $ InsertEdge n_edg
Just _ -> dg
n_dg = groupHistory dg flatNonDisjUnion u_dg
in
createLinks n_dg (nd, lb) tl
{- given an element in the level and a lower link, function searches
elements in the given level, which are suitable for inserting a link
connecting given element. -}
searchForLink :: ([Node], Node, G_sign) -> [([Node], Node, G_sign)] -> [Node]
searchForLink el@(nds1, _, _) down_level = case down_level of
[] -> []
(nds2, nd2, _) : tl -> [ nd2 | containedInList nds2 nds1 ]
++ searchForLink el tl
{- given two levels of the graph, insert links between them, so that the
signatures are imported properly -}
linkLevels :: DGraph -> [([Node], Node, G_sign)] -> [([Node], Node, G_sign)]
-> DGraph
linkLevels dg up_level down_level = case up_level of
[] -> dg
hd@(_, nd, _) : tl -> let
nds = searchForLink hd down_level
label = labDG dg nd
n_dg = createLinks dg (nd, label) nds
in
linkLevels n_dg tl down_level
{- given a list of the lower nodes, gives a DGraph with a first level
of nodes inserted in this graph -}
createFirstLevel :: DGraph -> [Node] -> (DGraph, [([Node], Node, G_sign)])
createFirstLevel dg nds =
let
combs = getAllCombinations 2 nds
init_level = map (\ l -> let
[x, y] = l
signx = signOf $ dgn_theory (labDG dg x)
signy = signOf $ dgn_theory (labDG dg y)
n_sign = getIntersectionOfAll [signx, signy]
in (l, n_sign)) combs
n_empty = filter (\ (_, sign@(G_sign lid _ _)) ->
sign /= emptyG_sign (Logic lid)) init_level
in
case length n_empty of
0 -> (dg, [])
_ -> let
atch_level = attachNewNodes n_empty (getNewNodeDG dg)
labels = createLabels dg atch_level
changes = map InsertNode labels
u_dg = changesDGH dg changes
n_dg = groupHistory dg flatNonDisjUnion u_dg
zero_level = map (\ x ->
([x], x, signOf $ dgn_theory (labDG n_dg x))) nds
lnk_dg = linkLevels n_dg atch_level zero_level
in
(lnk_dg, atch_level)
{- given a level of nodes and a graph, constructs upper level,
inserting the nodes of the new level to the DGraph -}
createNewLevel :: DGraph -> [Node] -> [([Node], Node, G_sign)]
-> (DGraph, [([Node], Node, G_sign)])
createNewLevel c_dg nds tripls = case tripls of
[] -> (c_dg, [])
[_] -> (c_dg, tripls)
(nd_s, _, _) : _ -> if length nd_s - length nds == 0 then (c_dg, [])
else let
combs = getAllCombinations (length nd_s + 1) nds
n_level = mapMaybe (`matchCombinations` tripls) combs
in if null n_level then (c_dg, []) else
let
atch_level = attachNewNodes n_level (getNewNodeDG c_dg)
labels = createLabels c_dg atch_level
chngs = map InsertNode labels
u_dg = changesDGH c_dg chngs
n_dg = groupHistory c_dg flatNonDisjUnion u_dg
lnk_dg = linkLevels n_dg atch_level tripls
in
(lnk_dg, atch_level)
{- iterate the procedure for all levels
(the level passed is already inserted in the graph) -}
iterateForAllLevels :: DGraph -> [Node] -> [([Node], Node, G_sign)] -> DGraph
iterateForAllLevels i_dg nds init_level =
if length init_level < 2 then i_dg else
let (n_dg, n_level) = createNewLevel i_dg nds init_level
in if null n_level then n_dg else
iterateForAllLevels n_dg nds n_level
-- applies itteration for all the nodes in the graph
applyToAllNodes :: DGraph -> [Node] -> DGraph
applyToAllNodes a_dg nds = case nds of
[] -> a_dg
hd : tl -> let
inc_nds = map (\ (x, _, _) -> x) (innDG a_dg hd)
(init_dg, init_level) = createFirstLevel a_dg inc_nds
final_dg = iterateForAllLevels init_dg inc_nds init_level
in
applyToAllNodes final_dg tl
{- given a lower level of nodes, gives upper level of nodes,
which are ingoing nodes for the lower level -}
filterIngoing :: DGraph -> [Node] -> [Node]
filterIngoing dg nds = case nds of
[] -> []
hd : tl -> let ind = map (\ (x, _, _) -> x) (innDG dg hd) in
ind ++ filterIngoing dg (ind ++ tl)
{- this function takes a node and performs flattening
of non-disjoint unions for the ingoing tree of nodes to the given node -}
singleTreeFlatDUnions :: LibEnv -> LibName -> Node -> Result LibEnv
singleTreeFlatDUnions libEnv libName nd = let
dg = lookupDGraph libName libEnv
in_nds = filterIngoing dg [nd]
n_dg = applyToAllNodes dg in_nds
in return $ Map.insert libName n_dg libEnv
{- this functions performs flattening of
non-disjoint unions for the whole library -}
libFlatDUnions :: LibEnv -> Result LibEnv
libFlatDUnions le = return $ Map.map (dgFlatDUnions le) le