DGFlattening.hs revision 10f46e60ea9ea8787e4584ad0a9e5db6cfd76446
{- |
Module : $Header$
Description : Central datastructures for development graphs
Copyright : (c) Igor Stassiy, DFKI Bremen 2008
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : i.stassiy@jacobs-university.de
Stability : provisional
Portability : non-portable(Logic)
In this module we introduce flattening of the graph:
Flattening importings - deleting all inclusion links,
and inserting a new node, with new computed theory (computeTheory).
Flattening non-disjoint unions - for each node with more than two importings
modify importings in such a way that at each level, only non-disjoint
signatures are imported.
Flattening renaming - deterimining renaming link,
inserting a new node with the renaming morphism applied to theory of a
source, deleting the link and setting a new inclusion link between a
new node and the target node.
Flattening hiding links - for each compute normal form if there is such
and eliminate hiding links.
Flattening heterogeneity - for each heterogeneous link, compute theory of
a target node and eliminate heterogeneous link.
-}
module Proofs.DGFlattening (dg_flattening_imports,
libEnv_flattening_imports, -- importing
dg_flattening_dunions,
libEnv_flattening_dunions, -- non-disjoint unions
dg_flattening_renamings,
libEnv_flattening_renamings, -- import with renaming
dg_flattening_hiding,
libEnv_flattening_hiding, -- hiding
dg_flattening_heterogen,
libEnv_flattening_heterogen, -- heterogeniety
singleTree_flattening_dunions
) where
import Common.ExtSign
import Common.Id
import Common.LibName
import Common.Result
import Comorphisms.LogicGraph
import Control.Monad
import Data.Graph.Inductive.Graph hiding (empty)
import Data.List
import Data.Maybe
import Logic.Coerce
import Logic.Grothendieck
import Logic.Logic
import Proofs.EdgeUtils
import Proofs.NormalForm
import Proofs.TheoremHideShift
import Static.DevGraph
import Static.GTheory
import qualified Data.Map as Map
import qualified Data.Set as Set
mkFlatStr :: String -> DGRule
mkFlatStr = DGRule . ("Flattening " ++)
flatImports :: DGRule
flatImports = mkFlatStr "all imports"
flatNonDisjUnion :: DGRule
flatNonDisjUnion = mkFlatStr "non-disjoint union"
flatRename :: DGRule
flatRename = mkFlatStr "renaming"
flatHide :: DGRule
flatHide = mkFlatStr "hiding"
flatHet :: DGRule
flatHet = mkFlatStr "heterogeneity"
-- given a node in a library, gives the node at the end of the reference chain
-- in the library
lookUpReferenceChain :: LibEnv -> LIB_NAME -> Node -> (LIB_NAME,Node)
lookUpReferenceChain lib_Env libName nd = let
dg = (lookupDGraph libName lib_Env)
in
case (lookupInRefNodesDG nd dg) of
Just (n_lib,n_nd) -> lookUpReferenceChain lib_Env n_lib n_nd
Nothing -> (libName,nd)
-- this function performs flattening of import links
dg_flattening_imports :: LibEnv -> LIB_NAME -> Result DGraph
dg_flattening_imports libEnv ln = do
let
dg = lookupDGraph ln libEnv
nds = nodesDG dg
-- part for dealing with the graph itself
updLib = updateLib libEnv ln nds
updDG = lookupDGraph ln updLib
-- it seems changes of the labels are lost and all edges are simply deleted
n_dg = changesDGH dg $ map DeleteEdge $ labEdgesDG updDG
return $ groupHistory dg flatImports n_dg
where
updateNode :: LibEnv
-> LIB_NAME
-> Node
-> Result DGChange
updateNode lib_Env l_n n =
let
dg = lookupDGraph l_n lib_Env
labRf = labDG dg n
-- have to consider references here. computeTheory is applied
-- to the node at the end of the chain of references only.
in
do
ndgn_theory <- computeTheory lib_Env l_n n
return $ SetNodeLab labRf (n, labRf {dgn_theory = ndgn_theory})
updateLib :: LibEnv -> LIB_NAME -> [Node] -> LibEnv
updateLib lib_Env l_n nds =
case nds of
[] -> lib_Env
hd : tl -> let
change = propagateErrors (updateNode lib_Env l_n hd)
ref_dg = lookupDGraph l_n lib_Env
u_dg = changeDGH ref_dg change
new_dg = groupHistory ref_dg flatImports u_dg
in
updateLib (Map.insert l_n new_dg lib_Env) l_n tl
-- this function performs flattening of imports for the whole library
libEnv_flattening_imports :: LibEnv -> Result LibEnv
libEnv_flattening_imports lib = do
new_lib_env <- mapM (\ (x,_) -> do
z <- dg_flattening_imports lib x
return (x, z)) $ Map.toList lib
return $ Map.fromList new_lib_env
-- this function performs flattening of imports with renamings
-- links for a given developement graph
dg_flattening_renamings :: LibEnv -> LIB_NAME -> DGraph
dg_flattening_renamings lib_Env l_n =
let
dg = lookupDGraph l_n lib_Env
l_edges = labEdgesDG dg
renamings = Prelude.filter (\ (_,_,x) -> let l_type = getRealDGLinkType x in
case l_type of
DGEdgeType { edgeTypeModInc = GlobalDef, isInc = False} -> True
_ -> False ) l_edges
fin_dg = applyUpdDG renamings dg
-- no need to care about references as each node
-- is preserved during flattening.
in fin_dg
where
updateDGWithChanges :: LEdge DGLinkLab -> DGraph -> DGraph
updateDGWithChanges l_edg@( v1, v2, label) d_graph =
let
--update nodes
lv1 = labDG d_graph v1
lv2 = labDG d_graph v2
name = dgn_name lv1
n_node = getNewNodeDG d_graph
nlv1 = (do
n_dgn_theory <- computeTheory lib_Env l_n v1
return $ lv1 {dgn_theory = n_dgn_theory } )
nlv2 = (do
n_dgn_theory <- computeTheory lib_Env l_n v2
return $ lv2 {dgn_theory = n_dgn_theory } )
n_lnode = (do
t_dgn_theory <-
translateG_theory (dgl_morphism label)
(dgn_theory $ propagateErrors nlv1)
return (n_node,
(newInfoNodeLab (name)
(newNodeInfo DGFlattening)
t_dgn_theory) ) )
--create edge
sign_source = signOf . dgn_theory . snd $ propagateErrors n_lnode
sign_target = signOf . dgn_theory $ labDG d_graph v2
n_edg = (do
ng_morphism <- ginclusion logicGraph
sign_source
sign_target
return (n_node,
v2,
label { dgl_morphism = ng_morphism,
dgl_type = globalDef ,
dgl_origin = DGLinkFlatteningRename,
dgl_id = defaultEdgeId }) )
change_dg = [SetNodeLab lv1 (v1, propagateErrors nlv1 ),
SetNodeLab lv2 (v2, propagateErrors nlv2 ),
DeleteEdge l_edg,
InsertNode (propagateErrors n_lnode),
InsertEdge (propagateErrors n_edg)]
in
changesDGH d_graph change_dg
applyUpdDG :: [LEdge DGLinkLab] -> DGraph -> DGraph
applyUpdDG l_list d_g = case l_list of
[] -> d_g
hd : tl -> let
dev_g = updateDGWithChanges hd d_g
in applyUpdDG tl $ groupHistory d_g flatRename dev_g
-- this function performs flattening of imports with renamings
libEnv_flattening_renamings :: LibEnv -> Result LibEnv
libEnv_flattening_renamings libEnv =
let
new_lib_env = Prelude.map (\ (x,_) ->
let
z = dg_flattening_renamings libEnv x
in
(x, z)) $ Map.toList libEnv
in
return $ Map.fromList new_lib_env
-- this function performs flattening of hiding links
dg_flattening_hiding :: DGraph -> DGraph
dg_flattening_hiding dg = let
hids = Prelude.filter (\ (_,_,x) -> (case dgl_type x of
HidingDefLink -> True
_ -> False)) $ labEdgesDG dg
-- no need to care about references either, as nodes are preserved
-- after flattening, as well as references.
n_dg = changesDGH dg $ map DeleteEdge hids
in groupHistory dg flatHide n_dg
-- this function performs flattening of heterogeniety for the whole library
libEnv_flattening_hiding :: LibEnv -> Result LibEnv
libEnv_flattening_hiding =
fmap (Map.map dg_flattening_hiding) . normalFormLibEnv
-- this function performs flattening of heterogeniety
-- for a given developement graph
dg_flattening_heterogen :: LibEnv -> LIB_NAME -> Result DGraph
dg_flattening_heterogen libEnv ln = do
let
dg = lookupDGraph ln libEnv
l_edges = labEdgesDG dg
het_comorph = Prelude.filter (\ (_,_,x) ->
let
comorph = dgl_morphism x
in
not $ isHomogeneous comorph) l_edges
het_del_changes = Prelude.map DeleteEdge het_comorph
updLib = updateNodes libEnv ln . Set.toList . Set.fromList
$ map ( \(_, t, _) -> t) het_comorph
udg = lookupDGraph ln updLib
ndg = changesDGH udg het_del_changes
return $ groupHistory udg flatHet ndg
where
updateNodes :: LibEnv
-> LIB_NAME
-> [Node]
-> LibEnv
updateNodes lib_Env l_n nds = case nds of
[] -> lib_Env
hd : tl -> let
-- have to consider references here. computeTheory is applied to the
-- node at the end of the chain of references only.
(lname,nd) = lookUpReferenceChain lib_Env l_n hd
odg = lookupDGraph lname lib_Env
labRf = labDG odg nd
change = propagateErrors $ do
ndgn_theory <- computeTheory lib_Env lname nd
return $ SetNodeLab labRf (nd, labRf {dgn_theory = ndgn_theory})
cdg = changeDGH odg change
n_dg = groupHistory odg flatHet cdg
in
(updateNodes (Map.insert lname n_dg lib_Env) l_n tl)
-- this function performs flattening of heterogeniety for the whole library
libEnv_flattening_heterogen :: LibEnv -> Result LibEnv
libEnv_flattening_heterogen lib = do
new_lib_env <- mapM (\ (x,_) -> do
z <- dg_flattening_heterogen lib x
return (x, z)) $ Map.toList lib
return $ Map.fromList new_lib_env
-- this function performs flattening of non-disjoint unions for the given
-- DGraph
dg_flattening_dunions :: LibEnv -> LIB_NAME -> Result DGraph
dg_flattening_dunions libEnv ln = do
let
dg = lookupDGraph ln libEnv
all_nodes = nodesDG dg
imp_nds = Prelude.filter (\ x -> ( length (innDG dg x) > 1)) all_nodes
--lower_nodes = Prelude.filter (\ x -> (outDG dg x == [])) (nodesDG dg)
-- as previously, no need to care about reference nodes,
-- as previous one remain same.
return $ applyToAllNodes dg imp_nds
-- this funciton given a list og G_sign returns intersection of them
getIntersectionOfAll :: [G_sign] -> Result G_sign
getIntersectionOfAll signs =
case signs of
[] -> error "empty signatures list"
hd:[] -> return hd
(G_sign lid1 extSign1 _)
:(G_sign lid2 (ExtSign signtr2 _) _)
:tl -> let
n_signtr = propagateErrors (do
(ExtSign sign1 _) <- coerceSign lid1
lid2
"getIntersectionOfAll"
extSign1
n_sign <- intersection lid2 sign1 signtr2
return $ G_sign lid2 (mkExtSign n_sign) startSigId)
in
case (n_signtr) == (emptyG_sign (Logic lid2)) of
True -> return n_signtr
False -> getIntersectionOfAll (n_signtr:tl)
-- this function given a list of all possible combinations of nodes
-- of a given length
getAllCombinations :: Int -> [Node] -> [[Node]]
getAllCombinations 0 _ = [ [] ]
getAllCombinations n xs = [ y:ys | y:xs' <- tails xs
, ys <- getAllCombinations (n-1) xs']
-- tells if two lists are equal or one contained in the other
containedInList :: [Node] -> [Node] -> Bool
containedInList [] _ = True
containedInList (hd:tl) l2 = if elem hd l2 then containedInList tl l2
else False
-- attach new nodes to the level
attachNewNodes :: [([Node],G_sign)] -> Int -> [([Node],Node,G_sign)]
attachNewNodes [] _ = []
attachNewNodes ((hd,sg):tl) n = (hd,n,sg):(attachNewNodes tl (n+1))
-- search for a match for a given combination in a level
searchForMatch :: [Node]
-> [([Node],Node,G_sign)]
-> Maybe ([Node],Node,G_sign)
searchForMatch _ [] = Nothing
searchForMatch l ((tripl@(nds,_,_)):tl) = if containedInList l nds
then Just tripl
else searchForMatch l tl
-- take a combination of nodes, previous level,
-- and get the signature for the next level
matchCombinations :: [Node]
-> [([Node],Node,G_sign)]
-> Maybe ([Node],G_sign)
matchCombinations [] _ = Nothing
matchCombinations (_:[]) _= Nothing
matchCombinations l@(hd1:hd2:tl) trpls =
case searchForMatch (hd1:tl) trpls of
Nothing -> Nothing
Just (_,_,gsig1@(G_sign lid _ _)) ->
case searchForMatch (hd2:tl) trpls of
Nothing -> Nothing
Just (_,_,gsig2) ->
let
n_sig = propagateErrors (getIntersectionOfAll [gsig1,gsig2])
in
case n_sig == (emptyG_sign (Logic lid)) of
True -> Nothing
False -> Just (l, n_sig)
-- for a dg and a level, create labels for the new nodes
createLabels :: DGraph
-> [([Node],Node,G_sign)]
-> Result [LNode DGNodeLab]
createLabels dg tripls = case tripls of
[] -> error "createLabels: empty list on input"
_ -> let
labels = Prelude.map (\ (x,
y,
G_sign lid (ExtSign sign symb) ind) -> let
-- name intersection by interspersing a string for a SimpleId
s_id = mkSimpleId . intercalate "'"
$ map (flip getNameOfNode dg) x
n_theory = noSensGTheory lid (ExtSign sign symb) ind
n_name = makeName s_id
n_info = newNodeInfo DGFlattening
in
(y,newInfoNodeLab n_name n_info n_theory)) tripls
in
return labels
-- create links connecting given node with a list of nodes
createLinks :: DGraph -> (LNode DGNodeLab) -> [Node] -> DGraph
createLinks dg _ [] = dg
createLinks dg (nd, lb) (hd:tl) =
let
sign_source = signOf (dgn_theory lb)
sign_target = signOf (dgn_theory $ labDG dg hd)
n_edg = propagateErrors $ do
ng_morphism <- ginclusion logicGraph sign_source sign_target
return (nd, hd, DGLink { dgl_morphism = ng_morphism,
dgl_type = globalDef,
dgl_origin = DGLinkFlatteningUnion,
dgl_id = defaultEdgeId })
u_dg = case tryToGetEdge n_edg dg of
Nothing -> changeDGH dg $ InsertEdge n_edg
Just _ -> dg
n_dg = groupHistory dg flatNonDisjUnion u_dg
in
createLinks n_dg (nd, lb) tl
-- given an element in the level and a lower link, function searches
-- elements in the given level, which are suitable for inserting a link
-- connecting given element.
searchForLink :: ([Node],Node,G_sign)
-> [([Node],Node,G_sign)]
-> [Node]
searchForLink el@(nds1,_,_) down_level = case down_level of
[] -> []
(nds2,nd2,_):tl -> if containedInList nds2 nds1
then nd2:searchForLink el tl
else searchForLink el tl
-- given two levels of the graph, insert links between them, so that the
-- signatures are imported properly
linkLevels :: DGraph
-> [([Node],Node,G_sign)]
-> [([Node],Node,G_sign)]
-> DGraph
linkLevels dg up_level down_level = case up_level of
[] -> dg
(hd@(_,nd,_)):tl -> let
nds = searchForLink hd down_level
label = labDG dg nd
n_dg = createLinks dg (nd,label) nds
in
linkLevels n_dg tl down_level
-- given a list of the lower nodes, gives a DGraph with a first level
-- of nodes inserted in this graph
createFirstLevel :: DGraph -> [Node] -> (DGraph,[([Node],Node,G_sign)])
createFirstLevel dg nds =
let
combs = getAllCombinations 2 nds
init_level = Prelude.map (\ [x,y] -> let
signx = signOf $ dgn_theory (labDG dg x)
signy = signOf $ dgn_theory (labDG dg y)
n_sign = getIntersectionOfAll [signx
,signy]
in
([x,y],propagateErrors n_sign)) combs
n_empty = Prelude.filter (\ (_,sign@(G_sign lid _ _)) ->
sign /= emptyG_sign (Logic lid)) init_level
in
case length n_empty of
0 -> (dg,[])
_ -> let
atch_level = attachNewNodes n_empty (getNewNodeDG dg)
labels = createLabels dg atch_level
changes = Prelude.map InsertNode (propagateErrors labels)
u_dg = changesDGH dg changes
n_dg = groupHistory dg flatNonDisjUnion u_dg
zero_level = Prelude.map (\ x ->
([x],x,signOf $ dgn_theory (labDG n_dg x))) nds
lnk_dg = linkLevels n_dg atch_level zero_level
in
(lnk_dg,atch_level)
-- given a level of nodes and a graph, constructs upper level,
-- inserting the nodes of the new level to the DGraph
createNewLevel :: DGraph
-> [Node]
-> [([Node],Node,G_sign)]
-> (DGraph,[([Node],Node,G_sign)])
createNewLevel c_dg nds tripls = case tripls of
[] -> (c_dg,[])
(_,_,_):[] -> (c_dg,tripls)
(nd_s, _, _):_ -> case (length nd_s -length nds) of
0 -> (c_dg,[])
_ -> let
combs = getAllCombinations (length nd_s +1) nds
n_level = Prelude.map (\ x -> fromJust x) $
Prelude.filter (\ x -> isJust x)
(Prelude.map (\ x -> matchCombinations x tripls) combs)
in
case length n_level of
0 -> (c_dg,[])
_ -> let
atch_level = attachNewNodes n_level (getNewNodeDG c_dg)
labels = createLabels c_dg atch_level
chngs = Prelude.map (\ x -> InsertNode(x))
(propagateErrors labels)
u_dg = changesDGH c_dg chngs
n_dg = groupHistory c_dg flatNonDisjUnion u_dg
lnk_dg = linkLevels n_dg atch_level tripls
in
(lnk_dg, atch_level)
-- iterate the procedure for all levels
-- (the level passed is already inserted in the graph)
iterateForAllLevels :: DGraph
-> [Node]
-> [([Node],Node,G_sign)]
-> DGraph
iterateForAllLevels i_dg nds init_level =
case ((length init_level)<2) of
False -> let
(n_dg, n_level) = createNewLevel i_dg nds init_level
in
case length n_level of
0 -> n_dg
_ -> iterateForAllLevels n_dg nds n_level
True -> i_dg
-- applies itteration for all the nodes in the graph
applyToAllNodes :: DGraph -> [Node] -> DGraph
applyToAllNodes a_dg nds = case nds of
[] -> a_dg
hd:tl -> let
inc_nds = Prelude.map (\ (x,_,_) -> x) (innDG a_dg hd)
(init_dg,init_level) = createFirstLevel a_dg inc_nds
final_dg = iterateForAllLevels init_dg inc_nds init_level
in
applyToAllNodes final_dg tl
-- given a lower level of nodes, gives upper level of nodes,
-- which are ingoing nodes for the lower level
filterIngoing :: DGraph -> [Node] -> [Node]
filterIngoing dg nds = case nds of
[] -> []
hd:tl -> let
ind = Prelude.map (\(x,_,_) -> x) (innDG dg hd)
in
ind ++ filterIngoing dg (ind ++ tl)
-- this function takes a node and performs flattening
-- of non-disjoint unions for the ingoing tree of nodes to the given node
singleTree_flattening_dunions :: LibEnv
-> LIB_NAME
-> Node
-> Result LibEnv
singleTree_flattening_dunions libEnv libName nd =
let
dg = lookupDGraph libName libEnv
in_nds = filterIngoing dg [nd]
n_dg = applyToAllNodes dg in_nds
in
return $ Map.insert libName n_dg libEnv
-- this functions performs flattening of
-- non-disjoint unions for the whole library
libEnv_flattening_dunions :: LibEnv -> Result LibEnv
libEnv_flattening_dunions lib = do
new_lib_env <- mapM (\ (l_name, _) -> do
n_dg <- dg_flattening_dunions lib l_name
return $ (l_name, n_dg)) $ Map.toList lib
return $ Map.fromList new_lib_env