OWL22CASL.hs revision ac222650eff05099d9fc69240c7c2d29ab5f99b7
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : Comorphism from OWL 2 to CASL_Dl
Copyright : (c) Francisc-Nicolae Bungiu
License : GPLv2 or higher, see LICENSE.txt
Maintainer : f.bungiu@jacobs-university.de
Stability : provisional
Portability : non-portable (via Logic.Logic)
-}
module OWL2.OWL22CASL (OWL22CASL (..)) where
import Logic.Logic as Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Result
import Common.Id
import Control.Monad
import Data.Char
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Common.Lib.MapSet as MapSet
import qualified Common.Lib.Rel as Rel
-- the DL with the initial signature for OWL
import CASL_DL.PredefinedCASLAxioms
-- OWL = domain
import OWL2.Logic_OWL2
import OWL2.MS
import OWL2.AS
import OWL2.Parse
import OWL2.ProfilesAndSublogics
import OWL2.ManchesterPrint ()
import OWL2.Morphism
import OWL2.Symbols
import qualified OWL2.Sign as OS
-- CASL_DL = codomain
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.Morphism
import CASL.Sublogic
import Common.ProofTree
import Data.Maybe
import Text.ParserCombinators.Parsec
data OWL22CASL = OWL22CASL deriving Show
instance Language OWL22CASL
instance Comorphism
OWL22CASL -- comorphism
OWL2 -- lid domain
ProfSub -- sublogics domain
OntologyDocument -- Basic spec domain
Axiom -- sentence domain
SymbItems -- symbol items domain
SymbMapItems -- symbol map items domain
OS.Sign -- signature domain
OWLMorphism -- morphism domain
Entity -- symbol domain
RawSymb -- rawsymbol domain
ProofTree -- proof tree codomain
CASL -- lid codomain
CASL_Sublogics -- sublogics codomain
CASLBasicSpec -- Basic spec codomain
CASLFORMULA -- sentence codomain
SYMB_ITEMS -- symbol items codomain
SYMB_MAP_ITEMS -- symbol map items codomain
CASLSign -- signature codomain
CASLMor -- morphism codomain
Symbol -- symbol codomain
RawSymbol -- rawsymbol codomain
ProofTree -- proof tree domain
where
sourceLogic OWL22CASL = OWL2
sourceSublogic OWL22CASL = topS
targetLogic OWL22CASL = CASL
mapSublogic OWL22CASL _ = Just $ cFol
{ cons_features = emptyMapConsFeature }
map_theory OWL22CASL = mapTheory
map_morphism OWL22CASL = mapMorphism
map_symbol OWL22CASL _ = mapSymbol
isInclusionComorphism OWL22CASL = True
has_model_expansion OWL22CASL = True
-- | Mapping of OWL morphisms to CASL morphisms
mapMorphism :: OWLMorphism -> Result CASLMor
mapMorphism oMor =
do
cdm <- mapSign $ osource oMor
ccd <- mapSign $ otarget oMor
let emap = mmaps oMor
preds = Map.foldWithKey (\ (Entity ty u1) u2 -> let
i1 = uriToId u1
i2 = uriToId u2
in case ty of
Class -> Map.insert (i1, conceptPred) i2
ObjectProperty -> Map.insert (i1, objectPropPred) i2
DataProperty -> Map.insert (i1, dataPropPred) i2
_ -> id) Map.empty emap
ops = Map.foldWithKey (\ (Entity ty u1) u2 -> case ty of
NamedIndividual ->
Map.insert (uriToId u1, indiConst) (uriToId u2, Total)
_ -> id) Map.empty emap
return (embedMorphism () cdm ccd)
{ op_map = ops
, pred_map = preds }
mapSymbol :: Entity -> Set.Set Symbol
mapSymbol (Entity ty iri) = let
syN = Set.singleton . Symbol (uriToId iri)
in case ty of
Class -> syN $ PredAsItemType conceptPred
ObjectProperty -> syN $ PredAsItemType objectPropPred
DataProperty -> syN $ PredAsItemType dataPropPred
NamedIndividual -> syN $ OpAsItemType indiConst
AnnotationProperty -> Set.empty
Datatype -> Set.empty
data VarOrIndi = OVar Int | OIndi IRI
objectPropPred :: PredType
objectPropPred = PredType [thing, thing]
dataPropPred :: PredType
dataPropPred = PredType [thing, dataS]
indiConst :: OpType
indiConst = OpType Total [] thing
mapSign :: OS.Sign -- ^ OWL signature
-> Result CASLSign -- ^ CASL signature
mapSign sig =
let conc = OS.concepts sig
cvrt = map uriToId . Set.toList
tMp k = MapSet.fromList . map (\ u -> (u, [k]))
cPreds = thing : nothing : cvrt conc
oPreds = cvrt $ OS.objectProperties sig
dPreds = cvrt $ OS.dataProperties sig
aPreds = foldr MapSet.union MapSet.empty
[ tMp conceptPred cPreds
, tMp objectPropPred oPreds
, tMp dataPropPred dPreds ]
in return $ uniteCASLSign predefSign (emptySign ())
{ predMap = aPreds
, opMap = tMp indiConst . cvrt $ OS.individuals sig
}
loadDataInformation :: ProfSub -> Sign f ()
loadDataInformation _ =
let
dts = Set.fromList $ map stringToId datatypeKeys
in
(emptySign ()) { sortRel = Rel.fromKeysSet dts }
mapTheory :: (OS.Sign, [Named Axiom])
-> Result (CASLSign, [Named CASLFORMULA])
mapTheory (owlSig, owlSens) =
let
sl = topS
in
do
cSig <- mapSign owlSig
let pSig = loadDataInformation sl
(cSens, nSig) <- foldM (\ (x, y) z ->
do
(sen, sig) <- mapSentence y z
return (sen ++ x, uniteCASLSign sig y)
) ([], cSig) owlSens
return (uniteCASLSign nSig pSig, predefinedAxioms ++ cSens)
-- | mapping of OWL to CASL_DL formulae
mapSentence :: CASLSign -- ^ CASL Signature
-> Named Axiom -- ^ OWL2 Sentence
-> Result ([Named CASLFORMULA], CASLSign) -- ^ CASL Sentence
mapSentence cSig inSen = do
(outAx, outSig) <- mapAxioms cSig $ sentence inSen
return (map (flip mapNamed inSen . const) outAx, outSig)
mapAxioms :: CASLSign
-> Axiom
-> Result ([CASLFORMULA], CASLSign)
mapAxioms cSig ax =
case ax of
PlainAxiom ex fb ->
case fb of
ListFrameBit rel lfb ->
mapListFrameBit cSig ex rel lfb
AnnFrameBit _anno afb ->
mapAnnFrameBit cSig ex afb
toIRILst :: EntityType
-> Extended
-> Maybe IRI
toIRILst ty ane = case ane of
SimpleEntity (Entity ty2 iri) | ty == ty2 -> Just iri
_ -> Nothing
mapFact :: CASLSign -> Extended -> Fact -> Result CASLFORMULA
mapFact cSig ex f = case f of
ObjectPropertyFact posneg obe ind ->
case ex of
SimpleEntity (Entity NamedIndividual siri) ->
do
inS <- mapIndivURI cSig siri
inT <- mapIndivURI cSig ind
oPropH <- mapObjProp cSig obe 1 2
let oProp = case posneg of
Positive -> oPropH
Negative -> Negation oPropH nullRange
return (mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
(mkImpl
(conjunct
[mkStEq (toQualVar
(mkVarDecl (mkNName 1) thing)) inS,
mkStEq (toQualVar
(mkVarDecl (mkNName 2) thing)) inT]
) oProp))
_ -> fail $ "ObjectPropertyFactsFacts Entity fail: " ++ show ex
DataPropertyFact posneg dpe lit ->
case ex of
SimpleEntity (Entity ty iri) ->
case ty of
NamedIndividual ->
do
inS <- mapIndivURI cSig iri
inT <- mapLiteral lit
oPropH <- mapDataProp cSig dpe 1 2
let oProp = case posneg of
Positive -> oPropH
Negative -> Negation oPropH nullRange
return (mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) dataS]
(mkImpl (conjunct
[mkStEq (toQualVar
(mkVarDecl (mkNName 1) thing)) inS,
mkStEq (toQualVar
(mkVarDecl (mkNName 2) dataS)) $
upcast inT dataS]
) oProp))
_ -> fail "DataPropertyFact EntityType fail"
_ -> fail "DataPropertyFact Entity fail"
-- | Mapping of ListFrameBit
mapListFrameBit :: CASLSign
-> Extended
-> Maybe Relation
-> ListFrameBit
-> Result ([CASLFORMULA], CASLSign)
mapListFrameBit cSig ex rel lfb = case lfb of
AnnotationBit _a -> return ([], cSig)
ExpressionBit cls ->
case ex of
Misc _ -> return ([], cSig)
SimpleEntity (Entity ty iri) ->
case ty of
NamedIndividual | rel == Just Types ->
do
inD <- mapIndivURI cSig iri
ocls <- mapM (\ (_, c) -> mapDescription cSig c 1) cls
return (map (mkForall
[mkVarDecl (mkNName 1) thing] .
mkImpl (mkStEq (toQualVar
(mkVarDecl (mkNName 1) thing)) inD)
) ocls, cSig)
DataProperty | rel == (Just $ DRRelation ADomain) ->
do
oEx <- mapDataProp cSig iri 1 2
odes <- mapM (\ (_, c) -> mapDescription cSig c 1) cls
let vars = (mkNName 1, mkNName 2)
return (map (mkForall
[mkVarDecl (fst vars) thing] .
mkExist
[mkVarDecl (snd vars) dataS] .
mkImpl oEx
) odes, cSig)
_ -> return ([], cSig)
ObjectEntity oe ->
case rel of
Nothing -> return ([], cSig)
Just re ->
case re of
DRRelation r -> do
tobjP <- mapObjProp cSig oe 1 2
tdsc <- mapM (\ (_, c) -> mapDescription cSig c $
case r of
ADomain -> 1
ARange -> 2) cls
let vars = case r of
ADomain -> (mkNName 1, mkNName 2)
ARange -> (mkNName 2, mkNName 1)
return (map (mkForall
[mkVarDecl (fst vars) thing] .
mkExist
[mkVarDecl (snd vars) thing] .
mkImpl tobjP
) tdsc, cSig)
_ -> fail "ObjectEntity Relation nyi"
ClassEntity ce -> do
let map2nd = map snd cls
case rel of
Nothing -> return ([], cSig)
Just r -> case r of
EDRelation re ->
do
decrsS <- mapDescriptionListP cSig 1
$ comPairsaux ce map2nd
let decrsP = map (\ (x, y) -> mkForall
[mkVarDecl (mkNName 1) thing]
(case re of
Equivalent -> mkEqv x y
Disjoint -> mkNeg (conjunct [x, y])
)) decrsS
return (decrsP, cSig)
SubClass ->
do
domT <- mapDescription cSig ce 1
codT <- mapDescriptionList cSig 1 map2nd
return (map (mkForall
[mkVarDecl (mkNName 1) thing] .
mkImpl domT)
codT, cSig)
_ -> fail "ClassEntity Relation nyi"
ObjectBit ol ->
let mol = fmap ObjectProp (toIRILst ObjectProperty ex)
isJ = isJust mol
Just ob = mol
map2nd = map snd ol
in case rel of
Nothing -> return ([], cSig)
Just r -> case r of
EDRelation ed -> do
pairs <- mapComObjectPropsList cSig mol map2nd 1 2
return (map (\ (a, b) -> mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
(case ed of
Equivalent -> mkEqv a b
Disjoint -> mkNeg (conjunct [a, b])
)) pairs, cSig)
SubPropertyOf | isJ -> do
os <- mapM (\ (o1, o2) -> mapSubObjProp cSig o1 o2 3)
$ comPairsaux ob map2nd
return (os, cSig)
InverseOf | isJ ->
do
os1 <- mapM (\ o1 -> mapObjProp cSig o1 1 2) map2nd
o2 <- mapObjProp cSig ob 2 1
return (map (mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
. mkEqv o2
) os1, cSig)
_ -> return ([], cSig)
DataBit db ->
let mol = toIRILst DataProperty ex
isJ = isJust mol
map2nd = map snd db
Just ob = mol
in case rel of
Nothing -> return ([], cSig)
Just r -> case r of
SubPropertyOf | isJ -> do
os1 <- mapM (\ o1 -> mapDataProp cSig o1 1 2) map2nd
o2 <- mapDataProp cSig ob 2 1
return (map (mkForall [mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) dataS]
. mkImpl o2)
os1, cSig)
EDRelation ed -> do
pairs <- mapComDataPropsList cSig map2nd 1 2
return (map (\ (a, b) -> mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
(case ed of
Equivalent -> mkEqv a b
Disjoint -> mkNeg (conjunct [a, b])
)) pairs, cSig)
_ -> return ([], cSig)
IndividualSameOrDifferent al ->
do
let mol = toIRILst NamedIndividual ex
map2nd = map snd al
case rel of
Nothing -> return ([], cSig)
Just r ->
case r of
SDRelation re -> do
fs <- mapComIndivList cSig re mol map2nd
return (fs, cSig)
_ -> return ([], cSig)
DataPropRange dpr ->
case rel of
Nothing -> return ([], cSig)
Just re ->
case re of
DRRelation r ->
case r of
ARange ->
case ex of
SimpleEntity ent ->
case ent of
Entity ty iri ->
case ty of
DataProperty ->
do
oEx <- mapDataProp cSig iri 1 2
odes <- mapM (\ (_, c) ->
mapDataRange cSig c 2) dpr
let vars = (mkNName 1, mkNName 2)
return (map (mkForall [mkVarDecl
(fst vars) thing] .
mkExist [mkVarDecl
(snd vars) thing] .
mkImpl oEx
) odes, cSig)
_ -> fail "DataPropRange EntityType fail"
_ -> fail "DataPropRange Entity fail"
_ -> fail "DataPropRange ADomain ni"
_ -> fail "DataPropRange Relations ni"
IndividualFacts indf -> do
fl <- mapM (mapFact cSig ex . snd) indf
return (fl, cSig)
ObjectCharacteristics ace ->
let map2nd = map snd ace
in
case ex of
ObjectEntity ope ->
case map2nd of
[Functional] ->
do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 1 3
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing,
mkVarDecl (mkNName 3) thing]
(mkImpl
(conjunct [so1, so2])
(mkStEq
(toQualVar (mkVarDecl (mkNName 2) thing))
(toQualVar (mkVarDecl (mkNName 3) thing))
)
)], cSig)
[InverseFunctional] ->
do
so1 <- mapObjProp cSig ope 1 3
so2 <- mapObjProp cSig ope 2 3
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing,
mkVarDecl (mkNName 3) thing]
(mkImpl
(conjunct [so1, so2])
(mkStEq
(toQualVar (mkVarDecl (mkNName 1) thing))
(toQualVar (mkVarDecl (mkNName 2) thing))
)
)], cSig)
[Reflexive] ->
do
so <- mapObjProp cSig ope 1 1
return ([mkForall
[mkVarDecl (mkNName 1) thing]
(mkImpl (Membership (toQualVar
(mkVarDecl (mkNName 1) thing))
thing nullRange)
so)
], cSig)
[Irreflexive] ->
do
so <- mapObjProp cSig ope 1 1
return ([mkForall
[mkVarDecl (mkNName 1) thing]
(mkImpl (Membership (toQualVar
(mkVarDecl (mkNName 1) thing))
thing nullRange)
(mkNeg so))
], cSig)
[Symmetric] ->
do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 1
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
(mkImpl so1 so2)
], cSig)
[Asymmetric] ->
do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 1
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
(mkImpl so1 (mkNeg so2))
], cSig)
[Antisymmetric] ->
do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 1
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing]
(mkImpl
(conjunct [so1, so2])
(mkStEq
(toQualVar (mkVarDecl (mkNName 1) thing))
(toQualVar (mkVarDecl (mkNName 2) thing))
)
)], cSig)
[Transitive] ->
do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 3
so3 <- mapObjProp cSig ope 1 3
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) thing,
mkVarDecl (mkNName 3) thing]
(mkImpl (conjunct [so1, so2]) so3)
], cSig)
_ -> fail "ObjectCharacteristics Character fail"
_ -> fail "ObjectCharacteristics Entity fail"
-- | Mapping of AnnFrameBit
mapAnnFrameBit :: CASLSign
-> Extended
-> AnnFrameBit
-> Result ([CASLFORMULA], CASLSign)
mapAnnFrameBit cSig ex afb =
case afb of
AnnotationFrameBit _ -> return ([], cSig)
DataFunctional ->
case ex of
SimpleEntity (Entity ty iri) ->
case ty of
DataProperty ->
do
so1 <- mapDataProp cSig iri 1 2
so2 <- mapDataProp cSig iri 1 3
return ([mkForall
[mkVarDecl (mkNName 1) thing,
mkVarDecl (mkNName 2) dataS,
mkVarDecl (mkNName 3) dataS]
(mkImpl
(conjunct [so1, so2])
(mkStEq
(toQualVar (mkVarDecl (mkNName 2) thing))
(toQualVar (mkVarDecl (mkNName 3) thing))
)
)], cSig)
_ -> fail "DataFunctional EntityType fail"
_ -> fail "DataFunctional Extend fail"
DatatypeBit dr ->
case ex of
SimpleEntity (Entity ty iri) ->
case ty of
Datatype ->
do
odes <- mapDataRange cSig dr 2
let dtb = uriToId iri
return ([mkForall
[mkVarDecl (mkNName 1) thing]
(mkEqv
odes
(Membership
(toQualVar (mkVarDecl (mkNName 2) thing))
dtb
nullRange
)
)
], cSig)
_ -> fail "DatatypeBit EntityType fail"
_ -> fail "DatatypeBit Extend fail"
ClassDisjointUnion clsl ->
case ex of
SimpleEntity (Entity ty iri) ->
case ty of
Class ->
do
decrs <- mapDescriptionList cSig 1 clsl
decrsS <- mapDescriptionListP cSig 1 $ comPairs clsl clsl
let decrsP = map (\ (x, y) -> conjunct [x, y]) decrsS
mcls <- mapClassURI cSig iri (mkNName 1)
return ([mkForall
[mkVarDecl (mkNName 1) thing]
(mkEqv mcls
(conjunct
[disjunct decrs,
mkNeg (conjunct decrsP)]
)
)
], cSig)
_ -> fail "ClassDisjointUnion EntityType fail"
_ -> fail "ClassDisjointUnion Extend fail"
ClassHasKey _obpe _dpe -> return ([], cSig)
ObjectSubPropertyChain oplst ->
do
os <- mapM (\ cd -> mapSubObjPropChain cSig afb cd 3) oplst
return (os, cSig)
-- | Mapping of ObjectSubPropertyChain
mapSubObjPropChain :: CASLSign
-> AnnFrameBit
-> ObjectPropertyExpression
-> Int
-> Result CASLFORMULA
mapSubObjPropChain cSig prop oP num1 =
let num2 = num1 + 1
in
case prop of
ObjectSubPropertyChain props ->
do
let zprops = zip (tail props) [(num2 + 1) ..]
(_, vars) = unzip zprops
oProps <- mapM (\ (z, x, y) -> mapObjProp cSig z x y) $
zip3 props ((num1 : vars) ++ [num2]) $
tail ((num1 : vars) ++ [num2])
ooP <- mapObjProp cSig oP num1 num2
return $ mkForall
[mkVarDecl (mkNName 1) thing
, mkVarDecl (mkNName 2) thing]
(mkForall (map (\ x -> mkVarDecl
(mkNName x) thing) vars)
(mkImpl (conjunct oProps) ooP))
_ -> fail "mapping of ObjectSubPropertyChain failed"
{- | Mapping along ObjectPropsList for creation of pairs for commutative
operations. -}
mapComObjectPropsList :: CASLSign -- ^ CASLSignature
-> Maybe ObjectPropertyExpression
-> [ObjectPropertyExpression]
-> Int -- ^ First variable
-> Int -- ^ Last variable
-> Result [(CASLFORMULA, CASLFORMULA)]
mapComObjectPropsList cSig mol props num1 num2 = do
fs <- mapM (\ x -> mapObjProp cSig x num1 num2) props
case mol of
Nothing -> return $ comPairs fs fs
Just ol -> do
f <- mapObjProp cSig ol num1 num2
return $ comPairsaux f fs
-- | mapping of individual list
mapComIndivList :: CASLSign -- ^ CASLSignature
-> SameOrDifferent
-> Maybe Individual
-> [Individual]
-> Result [CASLFORMULA]
mapComIndivList cSig sod mol inds = do
fs <- mapM (mapIndivURI cSig) inds
tps <- case mol of
Nothing -> return $ comPairs fs fs
Just ol -> do
f <- mapIndivURI cSig ol
return $ comPairsaux f fs
return $ map (\ (x, y) -> case sod of
Same -> mkStEq x y
Different -> mkNeg (mkStEq x y)) tps
-- | Mapping of subobj properties
mapSubObjProp :: CASLSign
-> ObjectPropertyExpression
-> ObjectPropertyExpression
-> Int
-> Result CASLFORMULA
mapSubObjProp cSig oPL oP num1 = do
let num2 = num1 + 1
l <- mapObjProp cSig oPL num1 num2
r <- mapObjProp cSig oP num1 num2
return $ mkForallRange [mkVarDecl (mkNName num1) thing,
mkVarDecl (mkNName num2) thing]
(mkImpl r l )
nullRange
{- | Mapping along DataPropsList for creation of pairs for commutative
operations. -}
mapComDataPropsList :: CASLSign
-> [DataPropertyExpression]
-> Int -- ^ First variable
-> Int -- ^ Last variable
-> Result [(CASLFORMULA, CASLFORMULA)]
mapComDataPropsList cSig props num1 num2 =
mapM (\ (x, z) -> do
l <- mapDataProp cSig x num1 num2
r <- mapDataProp cSig z num1 num2
return (l, r)
) $ comPairs props props
mapNNInt :: NNInt -> TERM ()
mapNNInt int =
let NNInt uInt = int
in foldr1 joinDigits $ map mkDigit uInt
mapIntLit :: IntLit -> TERM ()
mapIntLit int =
let cInt = mapNNInt $ absInt int
in if isNegInt int then negateInt $ upcast cInt integer
else upcast cInt integer
mapDecLit :: DecLit -> TERM ()
mapDecLit dec =
let ip = truncDec dec
np = absInt ip
fp = fracDec dec
n = mkDecimal (mapNNInt np) (mapNNInt fp)
in if isNegInt ip then negateFloat n else n
mapFloatLit :: FloatLit -> TERM ()
mapFloatLit f =
let fb = floatBase f
ex = floatExp f
in mkFloat (mapDecLit fb) (mapIntLit ex)
mapNrLit :: Literal -> TERM ()
mapNrLit l = case l of
NumberLit f
| isFloatInt f -> mapIntLit $ truncDec $ floatBase f
| isFloatDec f -> mapDecLit $ floatBase f
| otherwise -> mapFloatLit f
_ -> error "not number literal"
mapLiteral :: Literal -> Result (TERM ())
mapLiteral lit = return $ case lit of
Literal l ty -> Sorted_term (case ty of
Untyped _ -> foldr consChar emptyStringTerm l
Typed dt -> case datatypeType dt of
OWL2Number -> let p = parse literal "" l in case p of
Right nr -> mapNrLit nr
_ -> error "cannot parse number literal"
OWL2Bool -> case l of
"True" -> trueT
_ -> falseT
_ -> foldr consChar emptyStringTerm l)
dataS nullRange
_ -> mapNrLit lit
-- | Mapping of data properties
mapDataProp :: CASLSign
-> DataPropertyExpression
-> Int
-> Int
-> Result CASLFORMULA
mapDataProp _ dP nO nD =
do
let
l = mkNName nO
r = mkNName nD
ur <- uriToIdM dP
return $ mkPredication
(mkQualPred ur (toPRED_TYPE dataPropPred))
[Qual_var l thing nullRange, Qual_var r dataS nullRange]
-- | Mapping of obj props
mapObjProp :: CASLSign
-> ObjectPropertyExpression
-> Int
-> Int
-> Result CASLFORMULA
mapObjProp cSig ob num1 num2 =
case ob of
ObjectProp u ->
do
let l = mkNName num1
r = mkNName num2
ur <- uriToIdM u
return $ mkPredication
(mkQualPred ur (toPRED_TYPE objectPropPred))
[Qual_var l thing nullRange, Qual_var r thing nullRange]
ObjectInverseOf u ->
mapObjProp cSig u num2 num1
-- | Mapping of obj props with Individuals
mapObjPropI :: CASLSign
-> ObjectPropertyExpression
-> VarOrIndi
-> VarOrIndi
-> Result CASLFORMULA
mapObjPropI cSig ob lP rP =
case ob of
ObjectProp u ->
do
lT <- case lP of
OVar num1 -> return $ Qual_var (mkNName num1)
thing nullRange
OIndi indivID -> mapIndivURI cSig indivID
rT <- case rP of
OVar num1 -> return $ Qual_var (mkNName num1)
thing nullRange
OIndi indivID -> mapIndivURI cSig indivID
ur <- uriToIdM u
return $ mkPredication
(mkQualPred ur (toPRED_TYPE objectPropPred))
[lT, rT]
ObjectInverseOf u -> mapObjPropI cSig u rP lP
-- | Mapping of Class URIs
mapClassURI :: CASLSign
-> Class
-> Token
-> Result CASLFORMULA
mapClassURI _ uril uid =
do
ur <- uriToIdM uril
return $ mkPredication
(mkQualPred ur (toPRED_TYPE conceptPred))
[Qual_var uid thing nullRange]
-- | Mapping of Individual URIs
mapIndivURI :: CASLSign
-> Individual
-> Result (TERM ())
mapIndivURI _ uriI =
do
ur <- uriToIdM uriI
return $ mkAppl
(mkQualOp ur (Op_type Total [] thing nullRange))
[]
uriToIdM :: IRI -> Result Id
uriToIdM = return . uriToId
-- | Extracts Id from URI
uriToId :: IRI -> Id
uriToId urI =
let l = localPart urI
ur = if isThing urI then mkQName l else urI
repl a = if isAlphaNum a
then
[a]
else
"_u"
nP = concatMap repl $ namePrefix ur
lP = concatMap repl l
in stringToId $ nP ++ "" ++ lP
-- | Mapping of a list of descriptions
mapDescriptionList :: CASLSign
-> Int
-> [ClassExpression]
-> Result [CASLFORMULA]
mapDescriptionList cSig n lst =
mapM (uncurry $ mapDescription cSig)
$ zip lst $ replicate (length lst) n
-- | Mapping of a list of pairs of descriptions
mapDescriptionListP :: CASLSign
-> Int
-> [(ClassExpression, ClassExpression)]
-> Result [(CASLFORMULA, CASLFORMULA)]
mapDescriptionListP cSig n lst =
do
let (l, r) = unzip lst
llst <- mapDescriptionList cSig n l
rlst <- mapDescriptionList cSig n r
let olst = zip llst rlst
return olst
-- | Get all distinct pairs for commutative operations
comPairs :: [t] -> [t1] -> [(t, t1)]
comPairs [] [] = []
comPairs _ [] = []
comPairs [] _ = []
comPairs (a : as) (_ : bs) = comPairsaux a bs ++ comPairs as bs
comPairsaux :: t -> [t1] -> [(t, t1)]
comPairsaux a = map (\ b -> (a, b))
-- | mapping of Data Range
mapDataRange :: CASLSign
-> DataRange
-> Int
-> Result CASLFORMULA
mapDataRange cSig dr inId =
do
let uid = mkNName inId
case dr of
DataType d _ ->
do
ur <- uriToIdM d
return $ Membership
(Qual_var uid thing nullRange)
ur
nullRange
DataComplementOf drc ->
do
dc <- mapDataRange cSig drc inId
return $ mkNeg dc
DataOneOf _ -> error "nyi"
DataJunction _ _ -> error "nyi"
-- | mapping of OWL2 Descriptions
mapDescription :: CASLSign
-> ClassExpression
-> Int
-> Result CASLFORMULA
mapDescription cSig desc var = case desc of
Expression u -> mapClassURI cSig u (mkNName var)
ObjectJunction ty ds ->
do
des0 <- mapM (flip (mapDescription cSig) var) ds
return $ case ty of
UnionOf -> disjunct des0
IntersectionOf -> conjunct des0
ObjectComplementOf d ->
do
des0 <- mapDescription cSig d var
return $ mkNeg des0
ObjectOneOf is ->
do
ind0 <- mapM (mapIndivURI cSig) is
let var0 = toQualVar (mkVarDecl (mkNName var) thing)
let forms = map (mkStEq var0) ind0
return $ disjunct forms
ObjectValuesFrom ty o d ->
do
oprop0 <- mapObjProp cSig o var (var + 1)
desc0 <- mapDescription cSig d (var + 1)
case ty of
SomeValuesFrom ->
return $ mkExist
[mkVarDecl (mkNName (var + 1)) thing]
(conjunct [oprop0, desc0])
AllValuesFrom ->
return $ mkForall
[mkVarDecl (mkNName (var + 1)) thing]
(mkImpl oprop0 desc0)
ObjectHasSelf o -> mapObjProp cSig o var var
ObjectHasValue o i -> mapObjPropI cSig o (OVar var) (OIndi i)
ObjectCardinality c ->
case c of
Cardinality ct n oprop d
->
do
let vlst = [(var + 1) .. (n + var)]
vlstM = [(var + 1) .. (n + var + 1)]
dOut <- (\ x -> case x of
Nothing -> return []
Just y ->
mapM (mapDescription cSig y) vlst
) d
let dlst = map (\ (x, y) ->
mkNeg
(
mkStEq
(toQualVar (mkVarDecl
(mkNName x) thing))
(toQualVar (mkVarDecl
(mkNName y) thing))
)
) $ comPairs vlst vlst
dlstM = map (\ (x, y) ->
mkStEq
(toQualVar (mkVarDecl
(mkNName x) thing))
(toQualVar (mkVarDecl
(mkNName y) thing))
) $ comPairs vlstM vlstM
qVars = map (\ x ->
mkVarDecl (mkNName x) thing
) vlst
qVarsM = map (\ x ->
mkVarDecl (mkNName x) thing
) vlstM
oProps <- mapM (mapObjProp cSig oprop var) vlst
oPropsM <- mapM (mapObjProp cSig oprop var) vlstM
let minLst = mkExist
qVars
(conjunct (dlst ++ dOut ++ oProps))
let maxLst = mkForall
qVarsM
(
mkImpl
(conjunct (oPropsM ++ dOut))
(disjunct dlstM)
)
case ct of
MinCardinality -> return minLst
MaxCardinality -> return maxLst
ExactCardinality -> return $ conjunct [minLst, maxLst]
DataValuesFrom ty dpe dr ->
do
oprop0 <- mapDataProp cSig dpe var (var + 1)
desc0 <- mapDataRange cSig dr (var + 1)
case ty of
SomeValuesFrom ->
return $ mkExist
[mkVarDecl (mkNName (var + 1)) thing]
(conjunct [oprop0, desc0])
AllValuesFrom ->
return $ mkForall
[mkVarDecl (mkNName (var + 1)) thing]
(mkImpl oprop0 desc0)
DataHasValue _ _ -> fail "DataHasValue handling nyi"
DataCardinality _ -> fail "DataCardinality handling nyi"