OWL22CASL.hs revision 6504b297e21d071d8fada2f732cabb6d8f7d38a2
{-# LANGUAGE MultiParamTypeClasses, TypeSynonymInstances, FlexibleInstances #-}
{- |
Module : $Header$
Description : Comorphism from OWL 2 to CASL_Dl
Copyright : (c) Francisc-Nicolae Bungiu
License : GPLv2 or higher, see LICENSE.txt
Maintainer : f.bungiu@jacobs-university.de
Stability : provisional
Portability : non-portable (via Logic.Logic)
-}
module OWL2.OWL22CASL (OWL22CASL (..)) where
import Logic.Logic as Logic
import Logic.Comorphism
import Common.AS_Annotation
import Common.Result
import Common.Id
import Control.Monad
import Data.Char
import qualified Data.Set as Set
import qualified Data.Map as Map
import qualified Common.Lib.MapSet as MapSet
import qualified Common.Lib.Rel as Rel
-- the DL with the initial signature for OWL
import CASL_DL.PredefinedCASLAxioms
-- OWL = domain
import OWL2.Logic_OWL2
import OWL2.MS
import OWL2.AS
import OWL2.Parse
import OWL2.Print
import OWL2.ProfilesAndSublogics
import OWL2.ManchesterPrint ()
import OWL2.Morphism
import OWL2.Symbols
import qualified OWL2.Sign as OS
-- CASL_DL = codomain
import CASL.Logic_CASL
import CASL.AS_Basic_CASL
import CASL.Sign
import CASL.Morphism
import CASL.Sublogic
-- import OWL2.ManchesterParser
import Common.ProofTree
import Common.DocUtils
import Data.Maybe
data OWL22CASL = OWL22CASL deriving Show
instance Language OWL22CASL
instance Comorphism
OWL22CASL -- comorphism
OWL2 -- lid domain
ProfSub -- sublogics domain
OntologyDocument -- Basic spec domain
Axiom -- sentence domain
SymbItems -- symbol items domain
SymbMapItems -- symbol map items domain
OS.Sign -- signature domain
OWLMorphism -- morphism domain
Entity -- symbol domain
RawSymb -- rawsymbol domain
ProofTree -- proof tree codomain
CASL -- lid codomain
CASL_Sublogics -- sublogics codomain
CASLBasicSpec -- Basic spec codomain
CASLFORMULA -- sentence codomain
SYMB_ITEMS -- symbol items codomain
SYMB_MAP_ITEMS -- symbol map items codomain
CASLSign -- signature codomain
CASLMor -- morphism codomain
Symbol -- symbol codomain
RawSymbol -- rawsymbol codomain
ProofTree -- proof tree domain
where
sourceLogic OWL22CASL = OWL2
sourceSublogic OWL22CASL = topS
targetLogic OWL22CASL = CASL
mapSublogic OWL22CASL _ = Just $ cFol
{ cons_features = emptyMapConsFeature }
map_theory OWL22CASL = mapTheory
map_morphism OWL22CASL = mapMorphism
map_symbol OWL22CASL _ = mapSymbol
isInclusionComorphism OWL22CASL = True
has_model_expansion OWL22CASL = True
-- s = emptySign ()
uniteL :: [CASLSign] -> CASLSign
uniteL = foldl1 uniteCASLSign
failMsg :: Pretty a => a -> Result b
failMsg a = fail $ "cannot translate " ++ showDoc a "\n"
objectPropPred :: PredType
objectPropPred = PredType [thing, thing]
dataPropPred :: PredType
dataPropPred = PredType [thing, dataS]
indiConst :: OpType
indiConst = OpType Total [] thing
uriToIdM :: IRI -> Result Id
uriToIdM = return . uriToId
-- | Extracts Id from URI
uriToId :: IRI -> Id
uriToId urI =
let l = localPart urI
ur = if isThing urI then mkQName l else urI
repl a = if isAlphaNum a then [a] else "_u"
nP = concatMap repl $ namePrefix ur
lP = concatMap repl l
in stringToId $ (if isDatatypeKey urI then "" else nP) ++ lP
tokDecl :: Token -> VAR_DECL
tokDecl = flip mkVarDecl thing
tokDataDecl :: Token -> VAR_DECL
tokDataDecl = flip mkVarDecl dataS
nameDecl :: Int -> SORT -> VAR_DECL
nameDecl = mkVarDecl . mkNName
thingDecl :: Int -> VAR_DECL
thingDecl = flip nameDecl thing
dataDecl :: Int -> VAR_DECL
dataDecl = flip nameDecl dataS
qualThing :: Int -> TERM f
qualThing = toQualVar . thingDecl
qualData :: Int -> TERM f
qualData = toQualVar . dataDecl
implConj :: [FORMULA f] -> FORMULA f -> FORMULA f
implConj = mkImpl . conjunct
mkNC :: [FORMULA f] -> FORMULA f
mkNC = mkNeg . conjunct
mkEqVar :: VAR_DECL -> TERM f -> FORMULA f
mkEqVar = mkStEq . toQualVar
mkFEI :: [VAR_DECL] -> [VAR_DECL] -> FORMULA f -> FORMULA f -> FORMULA f
mkFEI l1 l2 f = mkForall l1 . mkExist l2 . mkImpl f
mkFIE :: [Int] -> [FORMULA f] -> Int -> Int -> FORMULA f
mkFIE l1 l2 x y = mkVDecl l1 $ implConj l2 $ mkEqVar (thingDecl x) $ qualThing y
mkRI :: [Int] -> Int -> FORMULA f -> FORMULA f
mkRI l x so = mkVDecl l $ mkImpl (mkMember (qualThing x) thing) so
mkThingVar :: VAR -> TERM f
mkThingVar v = Qual_var v thing nullRange
mkEqDecl :: Int -> TERM f -> FORMULA f
mkEqDecl i = mkEqVar (thingDecl i)
mkVDecl :: [Int] -> FORMULA f -> FORMULA f
mkVDecl = mkForall . map thingDecl
mkVDataDecl :: [Int] -> FORMULA f -> FORMULA f
mkVDataDecl = mkForall . map dataDecl
mk1VDecl :: FORMULA f -> FORMULA f
mk1VDecl = mkVDecl [1]
mkPred :: PredType -> [TERM f] -> PRED_NAME -> FORMULA f
mkPred c tl u = mkPredication (mkQualPred u $ toPRED_TYPE c) tl
mkMember :: TERM f -> SORT -> FORMULA f
mkMember t s = Membership t s nullRange
-- | Get all distinct pairs for commutative operations
comPairs :: [t] -> [t1] -> [(t, t1)]
comPairs [] [] = []
comPairs _ [] = []
comPairs [] _ = []
comPairs (a : as) (_ : bs) = mkPairs a bs ++ comPairs as bs
mkPairs :: t -> [s] -> [(t, s)]
mkPairs a = map (\ b -> (a, b))
data VarOrIndi = OVar Int | OIndi IRI
deriving (Show, Eq, Ord)
-- | Mapping of OWL morphisms to CASL morphisms
mapMorphism :: OWLMorphism -> Result CASLMor
mapMorphism oMor = do
cdm <- mapSign $ osource oMor
ccd <- mapSign $ otarget oMor
let emap = mmaps oMor
preds = Map.foldWithKey (\ (Entity ty u1) u2 -> let
i1 = uriToId u1
i2 = uriToId u2
in case ty of
Class -> Map.insert (i1, conceptPred) i2
ObjectProperty -> Map.insert (i1, objectPropPred) i2
DataProperty -> Map.insert (i1, dataPropPred) i2
_ -> id) Map.empty emap
ops = Map.foldWithKey (\ (Entity ty u1) u2 -> case ty of
NamedIndividual ->
Map.insert (uriToId u1, indiConst) (uriToId u2, Total)
_ -> id) Map.empty emap
return (embedMorphism () cdm ccd)
{ op_map = ops
, pred_map = preds }
mapSymbol :: Entity -> Set.Set Symbol
mapSymbol (Entity ty iri) = let
syN = Set.singleton . Symbol (uriToId iri)
in case ty of
Class -> syN $ PredAsItemType conceptPred
ObjectProperty -> syN $ PredAsItemType objectPropPred
DataProperty -> syN $ PredAsItemType dataPropPred
NamedIndividual -> syN $ OpAsItemType indiConst
AnnotationProperty -> Set.empty
Datatype -> Set.empty
mapSign :: OS.Sign -> Result CASLSign
mapSign sig =
let conc = OS.concepts sig
cvrt = map uriToId . Set.toList
tMp k = MapSet.fromList . map (\ u -> (u, [k]))
cPreds = thing : nothing : cvrt conc
oPreds = cvrt $ OS.objectProperties sig
dPreds = cvrt $ OS.dataProperties sig
aPreds = foldr MapSet.union MapSet.empty
[ tMp conceptPred cPreds
, tMp objectPropPred oPreds
, tMp dataPropPred dPreds ]
in return $ uniteCASLSign predefSign (emptySign ())
{ predMap = aPreds
, opMap = tMp indiConst . cvrt $ OS.individuals sig
}
loadDataInformation :: ProfSub -> Sign f ()
loadDataInformation _ = let dts = Set.fromList $ map stringToId datatypeKeys
in (emptySign ()) { sortRel = Rel.fromKeysSet dts }
mapTheory :: (OS.Sign, [Named Axiom]) -> Result (CASLSign, [Named CASLFORMULA])
mapTheory (owlSig, owlSens) = let sl = topS in do
cSig <- mapSign owlSig
let pSig = loadDataInformation sl
dTypes = (emptySign ()) {sortRel = Rel.transClosure $ Rel.fromList
$ map (\ d -> (uriToId d, dataS))
$ Set.toList $ OS.datatypes owlSig}
(cSens, nSig) <- foldM (\ (x, y) z -> do
(sen, sig) <- mapSentence y z
return (sen ++ x, uniteCASLSign sig y)) ([], cSig) owlSens
return (foldl1 uniteCASLSign [nSig, pSig, dTypes],
predefinedAxioms ++ cSens)
-- | mapping of OWL to CASL_DL formulae
mapSentence :: CASLSign -> Named Axiom -> Result ([Named CASLFORMULA], CASLSign)
mapSentence cSig inSen = do
(outAx, outSig) <- mapAxioms cSig $ sentence inSen
return (map (flip mapNamed inSen . const) outAx, outSig)
mapVar :: CASLSign -> VarOrIndi -> Result (TERM ())
mapVar cSig v = case v of
OVar n -> return $ qualThing n
OIndi i -> mapIndivURI cSig i
-- | Mapping of Class URIs
mapClassURI :: CASLSign -> Class -> Token -> Result CASLFORMULA
mapClassURI _ c t = fmap (mkPred conceptPred [mkThingVar t]) $ uriToIdM c
-- | Mapping of Individual URIs
mapIndivURI :: CASLSign -> Individual -> Result (TERM ())
mapIndivURI _ uriI = do
ur <- uriToIdM uriI
return $ mkAppl (mkQualOp ur (Op_type Total [] thing nullRange)) []
mapNNInt :: NNInt -> TERM ()
mapNNInt int = let NNInt uInt = int in foldr1 joinDigits $ map mkDigit uInt
mapIntLit :: IntLit -> TERM ()
mapIntLit int =
let cInt = mapNNInt $ absInt int
in if isNegInt int then negateInt $ upcast cInt integer
else upcast cInt integer
mapDecLit :: DecLit -> TERM ()
mapDecLit dec =
let ip = truncDec dec
np = absInt ip
fp = fracDec dec
n = mkDecimal (mapNNInt np) (mapNNInt fp)
in if isNegInt ip then negateFloat n else n
mapFloatLit :: FloatLit -> TERM ()
mapFloatLit f =
let fb = floatBase f
ex = floatExp f
in mkFloat (mapDecLit fb) (mapIntLit ex)
mapNrLit :: Literal -> TERM ()
mapNrLit l = case l of
NumberLit f
| isFloatInt f -> mapIntLit $ truncDec $ floatBase f
| isFloatDec f -> mapDecLit $ floatBase f
| otherwise -> mapFloatLit f
_ -> error "not number literal"
mapLiteral :: Literal -> Result (TERM ())
mapLiteral lit = return $ case lit of
Literal l ty -> Sorted_term (case ty of
Untyped _ -> foldr consChar emptyStringTerm l
Typed dt -> case getDatatypeCat dt of
OWL2Number -> let p = parse literal "" l in case p of
Right nr -> mapNrLit nr
_ -> error "cannot parse number literal"
OWL2Bool -> case l of
"true" -> trueT
_ -> falseT
_ -> foldr consChar emptyStringTerm l) dataS nullRange
_ -> mapNrLit lit
-- | Mapping of data properties
mapDataProp :: CASLSign -> DataPropertyExpression -> Int -> Int
-> Result CASLFORMULA
mapDataProp _ dp a b = fmap (mkPred dataPropPred [qualThing a, qualData b])
$ uriToIdM dp
-- | Mapping of obj props
mapObjProp :: CASLSign -> ObjectPropertyExpression -> Int -> Int
-> Result CASLFORMULA
mapObjProp cSig ob a b = case ob of
ObjectProp u -> fmap (mkPred objectPropPred $ map qualThing [a, b])
$ uriToIdM u
ObjectInverseOf u -> mapObjProp cSig u b a
-- | Mapping of obj props with Individuals
mapObjPropI :: CASLSign -> ObjectPropertyExpression -> VarOrIndi -> VarOrIndi
-> Result CASLFORMULA
mapObjPropI cSig ob lP rP = case ob of
ObjectProp u -> do
l <- mapVar cSig lP
r <- mapVar cSig rP
fmap (mkPred objectPropPred [l, r]) $ uriToIdM u
ObjectInverseOf u -> mapObjPropI cSig u rP lP
-- | mapping of individual list
mapComIndivList :: CASLSign -> SameOrDifferent -> Maybe Individual
-> [Individual] -> Result [CASLFORMULA]
mapComIndivList cSig sod mol inds = do
fs <- mapM (mapIndivURI cSig) inds
tps <- case mol of
Nothing -> return $ comPairs fs fs
Just ol -> do
f <- mapIndivURI cSig ol
return $ mkPairs f fs
return $ map (\ (x, y) -> case sod of
Same -> mkStEq x y
Different -> mkNeg $ mkStEq x y) tps
{- | Mapping along DataPropsList for creation of pairs for commutative
operations. -}
mapComDataPropsList :: CASLSign -> Maybe DataPropertyExpression
-> [DataPropertyExpression] -> Int -> Int
-> Result [(CASLFORMULA, CASLFORMULA)]
mapComDataPropsList cSig md props a b = do
fs <- mapM (\ x -> mapDataProp cSig x a b) props
case md of
Nothing -> return $ comPairs fs fs
Just dp -> fmap (`mkPairs` fs) $ mapDataProp cSig dp a b
{- | Mapping along ObjectPropsList for creation of pairs for commutative
operations. -}
mapComObjectPropsList :: CASLSign -> Maybe ObjectPropertyExpression
-> [ObjectPropertyExpression] -> Int -> Int
-> Result [(CASLFORMULA, CASLFORMULA)]
mapComObjectPropsList cSig mol props a b = do
fs <- mapM (\ x -> mapObjProp cSig x a b) props
case mol of
Nothing -> return $ comPairs fs fs
Just ol -> fmap (`mkPairs` fs) $ mapObjProp cSig ol a b
-- | mapping of Data Range
mapDataRange :: CASLSign -> DataRange -> Int -> Result (CASLFORMULA, CASLSign)
mapDataRange cSig dr i = case dr of
DataType d fl -> do
let dt = mkMember (qualData i) $ uriToId d
(sens, s) <- mapAndUnzipM (mapFacet cSig i d) fl
return (conjunct $ dt : sens, uniteL $ cSig : s)
DataComplementOf drc -> do
(sens, s) <- mapDataRange cSig drc i
return (mkNeg sens, uniteCASLSign cSig s)
DataJunction jt drl -> do
(jl, sl) <- mapAndUnzipM ((\ s v r -> mapDataRange s r v) cSig i) drl
let usig = uniteL sl
return $ case jt of
IntersectionOf -> (conjunct jl, usig)
UnionOf -> (disjunct jl, usig)
DataOneOf cs -> do
ls <- mapM mapLiteral cs
return (disjunct $ map (mkStEq $ qualData i) ls, cSig)
getNrType :: Datatype -> SORT
getNrType dt = case getPredefName dt of
"integer" -> integer
"negativeInteger" -> negIntS
"nonNegativeInteger" -> nonNegInt
"nonPositiveInteger" -> nonPosInt
"positiveInteger" -> posInt
"decimal" -> decimal
"double" -> double
"float" -> float
_ -> dataS -- for user-defined equivalent datatypes
mkPredType :: ConstrainingFacet -> Datatype -> PredType
mkPredType cf dt =
let c = getPredefName cf
in PredType $
if c `elem` map showFacet
[MININCLUSIVE, MAXINCLUSIVE, MINEXCLUSIVE, MAXEXCLUSIVE]
then let s = getNrType dt in [s, s]
else case c of
"pattern" -> [dataS, stringS]
_ -> [dataS, nonNegInt]
mkFacetPred :: TERM f -> ConstrainingFacet -> Int -> Datatype
-> (FORMULA f, Id)
mkFacetPred lit f var dt =
let cf = mkInfix $ fromCF f
pt@(PredType [t, _]) = mkPredType f dt
in (mkPred pt [toQualVar $ nameDecl var t, lit] cf, cf)
mapFacet :: CASLSign -> Int -> Datatype ->
(ConstrainingFacet, RestrictionValue) -> Result (CASLFORMULA, CASLSign)
mapFacet sig var dt (f, r) = do
con <- mapLiteral r
let (fp, cf) = mkFacetPred con f var dt
return (fp, uniteCASLSign sig $ (emptySign ())
{predMap = MapSet.fromList [(cf, [mkPredType f dt])]})
cardProps :: Bool -> CASLSign
-> Either ObjectPropertyExpression DataPropertyExpression -> Int
-> [Int] -> Result [CASLFORMULA]
cardProps b cSig prop var vLst =
if b then let Left ope = prop in mapM (mapObjProp cSig ope var) vLst
else let Right dpe = prop in mapM (mapDataProp cSig dpe var) vLst
mapCard :: Bool -> CASLSign -> CardinalityType -> Int
-> Either ObjectPropertyExpression DataPropertyExpression
-> Maybe (Either ClassExpression DataRange) -> Int
-> Result (FORMULA (), CASLSign)
mapCard b cSig ct n prop d var = do
let vlst = map (var +) [1 .. n]
vlstM = vlst ++ [n + var + 1]
(dOut, s) <- case d of
Nothing -> return ([], [emptySign ()])
Just y ->
if b then let Left ce = y in mapAndUnzipM
(mapDescription cSig ce) vlst
else let Right dr = y in mapAndUnzipM (mapDataRange cSig dr) vlst
let dlst = map (\ (x, y) -> mkNeg $ mkStEq (qualThing x) $ qualThing y)
$ comPairs vlst vlst
dlstM = map (\ (x, y) -> mkStEq (qualThing x) $ qualThing y)
$ comPairs vlstM vlstM
qVars = map thingDecl vlst
qVarsM = map thingDecl vlstM
oProps <- cardProps b cSig prop var vlst
oPropsM <- cardProps b cSig prop var vlstM
let minLst = mkExist qVars $ conjunct $ dlst ++ dOut ++ oProps
maxLst = mkForall qVarsM $ mkImpl (conjunct $ oPropsM ++ dOut)
$ disjunct dlstM
ts = uniteL $ cSig : s
return $ case ct of
MinCardinality -> (minLst, ts)
MaxCardinality -> (maxLst, ts)
ExactCardinality -> (conjunct [minLst, maxLst], ts)
-- | mapping of OWL2 Descriptions
mapDescription :: CASLSign -> ClassExpression -> Int ->
Result (CASLFORMULA, CASLSign)
mapDescription cSig desc var = case desc of
Expression u -> do
c <- mapClassURI cSig u $ mkNName var
return (c, cSig)
ObjectJunction ty ds -> do
(els, s) <- mapAndUnzipM (flip (mapDescription cSig) var) ds
return ((case ty of
UnionOf -> disjunct
IntersectionOf -> conjunct)
els, uniteL $ cSig : s)
ObjectComplementOf d -> do
(els, s) <- mapDescription cSig d var
return (mkNeg els, uniteCASLSign cSig s)
ObjectOneOf is -> do
il <- mapM (mapIndivURI cSig) is
return (disjunct $ map (mkStEq $ qualThing var) il, cSig)
ObjectValuesFrom ty o d -> let n = var + 1 in do
oprop0 <- mapObjProp cSig o var n
(desc0, s) <- mapDescription cSig d n
return $ case ty of
SomeValuesFrom -> (mkExist [thingDecl n] $ conjunct [oprop0, desc0],
uniteCASLSign cSig s)
AllValuesFrom -> (mkVDecl [n] $ mkImpl oprop0 desc0,
uniteCASLSign cSig s)
ObjectHasSelf o -> do
op <- mapObjProp cSig o var var
return (op, cSig)
ObjectHasValue o i -> do
op <- mapObjPropI cSig o (OVar var) (OIndi i)
return (op, cSig)
ObjectCardinality (Cardinality ct n oprop d) -> mapCard True cSig ct n
(Left oprop) (fmap Left d) var
DataValuesFrom ty dpe dr -> let n = var + 1 in do
oprop0 <- mapDataProp cSig dpe var n
(desc0, s) <- mapDataRange cSig dr n
let ts = uniteCASLSign cSig s
return $ case ty of
SomeValuesFrom -> (mkExist [dataDecl n] $ conjunct [oprop0, desc0],
ts)
AllValuesFrom -> (mkVDataDecl [n] $ mkImpl oprop0 desc0, ts)
DataHasValue dpe c -> do
con <- mapLiteral c
return (mkPred dataPropPred [qualThing var, con] $ uriToId dpe, cSig)
DataCardinality (Cardinality ct n dpe dr) -> mapCard False cSig ct n
(Right dpe) (fmap Right dr) var
-- | Mapping of a list of descriptions
mapDescriptionList :: CASLSign -> Int -> [ClassExpression]
-> Result ([CASLFORMULA], CASLSign)
mapDescriptionList cSig n lst = do
(els, s) <- mapAndUnzipM (uncurry $ mapDescription cSig)
$ zip lst $ replicate (length lst) n
return (els, uniteL $ cSig : s)
-- | Mapping of a list of pairs of descriptions
mapDescriptionListP :: CASLSign -> Int -> [(ClassExpression, ClassExpression)]
-> Result ([(CASLFORMULA, CASLFORMULA)], CASLSign)
mapDescriptionListP cSig n lst = do
let (l, r) = unzip lst
([lls, rls], s) <- mapAndUnzipM (mapDescriptionList cSig n) [l, r]
return (zip lls rls, uniteL $ cSig : s)
mapFact :: CASLSign -> Extended -> Fact -> Result CASLFORMULA
mapFact cSig ex f = case f of
ObjectPropertyFact posneg obe ind -> case ex of
SimpleEntity (Entity NamedIndividual siri) -> do
inS <- mapIndivURI cSig siri
inT <- mapIndivURI cSig ind
oPropH <- mapObjProp cSig obe 1 2
let oProp = case posneg of
Positive -> oPropH
Negative -> Negation oPropH nullRange
return $ mkVDecl [1, 2] $ implConj
[mkEqDecl 1 inS, mkEqDecl 2 inT] oProp
_ -> fail $ "ObjectPropertyFactsFacts Entity fail: " ++ show f
DataPropertyFact posneg dpe lit -> case ex of
SimpleEntity (Entity NamedIndividual iri) -> do
inS <- mapIndivURI cSig iri
inT <- mapLiteral lit
oPropH <- mapDataProp cSig dpe 1 2
let oProp = case posneg of
Positive -> oPropH
Negative -> Negation oPropH nullRange
return $ mkForall [thingDecl 1, dataDecl 2] $ implConj
[mkEqDecl 1 inS, mkEqVar (dataDecl 2) $ upcast inT dataS] oProp
_ -> fail $ "DataPropertyFact Entity fail " ++ show f
mapCharact :: CASLSign -> ObjectPropertyExpression -> Character
-> Result CASLFORMULA
mapCharact cSig ope c = case c of
Functional -> do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 1 3
return $ mkFIE [1, 2, 3] [so1, so2] 2 3
InverseFunctional -> do
so1 <- mapObjProp cSig ope 1 3
so2 <- mapObjProp cSig ope 2 3
return $ mkFIE [1, 2, 3] [so1, so2] 1 2
Reflexive -> do
so <- mapObjProp cSig ope 1 1
return $ mkRI [1] 1 so
Irreflexive -> do
so <- mapObjProp cSig ope 1 1
return $ mkRI [1] 1 $ mkNeg so
Symmetric -> do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 1
return $ mkVDecl [1, 2] $ mkImpl so1 so2
Asymmetric -> do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 1
return $ mkVDecl [1, 2] $ mkImpl so1 $ mkNeg so2
Antisymmetric -> do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 1
return $ mkFIE [1, 2] [so1, so2] 1 2
Transitive -> do
so1 <- mapObjProp cSig ope 1 2
so2 <- mapObjProp cSig ope 2 3
so3 <- mapObjProp cSig ope 1 3
return $ mkVDecl [1, 2, 3] $ implConj [so1, so2] so3
-- | Mapping of ObjectSubPropertyChain
mapSubObjPropChain :: CASLSign -> [ObjectPropertyExpression]
-> ObjectPropertyExpression -> Int -> Result CASLFORMULA
mapSubObjPropChain cSig props oP n = let m = n + 1 in do
let (_, vars) = unzip $ zip (tail props) [m + 1 ..]
vl = n : vars ++ [m]
oProps <- mapM (\ (z, x, y) -> mapObjProp cSig z x y) $
zip3 props vl $ tail vl
ooP <- mapObjProp cSig oP n m
return $ mkVDecl [1, 2] $ mkVDecl vars $ implConj oProps ooP
-- | Mapping of subobj properties
mapSubObjProp :: CASLSign -> ObjectPropertyExpression
-> ObjectPropertyExpression -> Int -> Result CASLFORMULA
mapSubObjProp cSig e1 e2 a = do
let b = a + 1
l <- mapObjProp cSig e1 a b
r <- mapObjProp cSig e2 a b
return $ mkForallRange (map thingDecl [a, b]) (mkImpl l r) nullRange
mkEDPairs :: CASLSign -> [Int] -> Maybe Relation -> [(FORMULA f, FORMULA f)]
-> Result ([FORMULA f], CASLSign)
mkEDPairs s il mr pairs = do
let ls = map (\ (x, y) -> mkVDecl il
$ case fromMaybe (error "expected EDRelation") mr of
EDRelation Equivalent -> mkEqv x y
EDRelation Disjoint -> mkNC [x, y]
_ -> error "expected EDRelation") pairs
return (ls, s)
-- | Mapping of ListFrameBit
mapListFrameBit :: CASLSign -> Extended -> Maybe Relation -> ListFrameBit
-> Result ([CASLFORMULA], CASLSign)
mapListFrameBit cSig ex rel lfb = case lfb of
AnnotationBit _ -> return ([], cSig)
ExpressionBit cls -> case ex of
Misc _ -> let cel = map snd cls in do
(els, s) <- mapDescriptionListP cSig 1 $ comPairs cel cel
mkEDPairs (uniteCASLSign cSig s) [1] rel els
SimpleEntity (Entity ty iri) -> do
(els, s) <- mapAndUnzipM (\ (_, c) -> mapDescription cSig c 1) cls
case ty of
NamedIndividual | rel == Just Types -> do
inD <- mapIndivURI cSig iri
return (map (mk1VDecl . mkImpl (mkEqDecl 1 inD)) els,
uniteL $ cSig : s)
DataProperty | rel == (Just $ DRRelation ADomain) -> do
oEx <- mapDataProp cSig iri 1 2
let vars = (mkNName 1, mkNName 2)
return (map (mkFEI [tokDecl $ fst vars]
[mkVarDecl (snd vars) dataS] oEx) els, uniteL $ cSig : s)
_ -> failMsg lfb
ObjectEntity oe -> case rel of
Nothing -> failMsg lfb
Just re -> case re of
DRRelation r -> do
tobjP <- mapObjProp cSig oe 1 2
(tdsc, s) <- mapAndUnzipM (\ (_, c) -> mapDescription cSig c
$ case r of
ADomain -> 1
ARange -> 2) cls
let vars = case r of
ADomain -> (mkNName 1, mkNName 2)
ARange -> (mkNName 2, mkNName 1)
return (map (mkFEI [tokDecl $ fst vars]
[tokDecl $ snd vars] tobjP) tdsc, uniteL $ cSig : s)
_ -> failMsg lfb
ClassEntity ce -> let cel = map snd cls in case rel of
Nothing -> return ([], cSig)
Just r -> case r of
EDRelation _ -> do
(decrsS, s) <- mapDescriptionListP cSig 1 $ mkPairs ce cel
mkEDPairs (uniteCASLSign cSig s) [1] rel decrsS
SubClass -> do
(domT, s1) <- mapDescription cSig ce 1
(codT, s2) <- mapDescriptionList cSig 1 cel
return (map (mk1VDecl . mkImpl domT) codT,
uniteL [cSig, s1, s2])
_ -> failMsg lfb
ObjectBit ol -> let opl = map snd ol in case rel of
Nothing -> failMsg lfb
Just r -> case ex of
Misc _ -> do
pairs <- mapComObjectPropsList cSig Nothing opl 1 2
mkEDPairs cSig [1, 2] rel pairs
ObjectEntity op -> case r of
EDRelation _ -> do
pairs <- mapComObjectPropsList cSig (Just op) opl 1 2
mkEDPairs cSig [1, 2] rel pairs
SubPropertyOf -> do
os <- mapM (\ (o1, o2) -> mapSubObjProp cSig o1 o2 3)
$ mkPairs op opl
return (os, cSig)
InverseOf -> do
os1 <- mapM (\ o1 -> mapObjProp cSig o1 1 2) opl
o2 <- mapObjProp cSig op 2 1
return (map (mkVDecl [1, 2] . mkEqv o2) os1, cSig)
_ -> failMsg lfb
_ -> failMsg lfb
DataBit anl -> let dl = map snd anl in case rel of
Nothing -> return ([], cSig)
Just r -> case ex of
Misc _ -> do
pairs <- mapComDataPropsList cSig Nothing dl 1 2
mkEDPairs cSig [1, 2] rel pairs
SimpleEntity (Entity DataProperty iri) -> case r of
SubPropertyOf -> do
os1 <- mapM (\ o1 -> mapDataProp cSig o1 1 2) dl
o2 <- mapDataProp cSig iri 2 1
return (map (mkForall [thingDecl 1, dataDecl 2]
. mkImpl o2) os1, cSig)
EDRelation _ -> do
pairs <- mapComDataPropsList cSig (Just iri) dl 1 2
mkEDPairs cSig [1, 2] rel pairs
_ -> return ([], cSig)
_ -> failMsg lfb
IndividualSameOrDifferent al -> case rel of
Nothing -> failMsg lfb
Just (SDRelation re) -> do
let SimpleEntity (Entity NamedIndividual iri) = ex
fs <- mapComIndivList cSig re (Just iri) $ map snd al
return (fs, cSig)
_ -> failMsg lfb
DataPropRange dpr -> case ex of
SimpleEntity (Entity DataProperty iri) -> do
oEx <- mapDataProp cSig iri 1 2
(odes, s) <- mapAndUnzipM (\ (_, c) -> mapDataRange cSig c 2) dpr
let vars = (mkNName 1, mkNName 2)
return (map (mkFEI [tokDecl $ fst vars]
[tokDataDecl $ snd vars] oEx) odes, uniteL $ cSig : s)
_ -> failMsg lfb
IndividualFacts indf -> do
fl <- mapM (mapFact cSig ex . snd) indf
return (fl, cSig)
ObjectCharacteristics ace -> case ex of
ObjectEntity ope -> do
cl <- mapM (mapCharact cSig ope . snd) ace
return (cl, cSig)
_ -> failMsg ace
-- | Mapping of AnnFrameBit
mapAnnFrameBit :: CASLSign -> Extended -> AnnFrameBit
-> Result ([CASLFORMULA], CASLSign)
mapAnnFrameBit cSig ex afb =
let err = fail $ "could not translate " ++ show afb in case afb of
AnnotationFrameBit _ -> return ([], cSig)
DataFunctional -> case ex of
SimpleEntity (Entity _ iri) -> do
so1 <- mapDataProp cSig iri 1 2
so2 <- mapDataProp cSig iri 1 3
return ([mkForall (thingDecl 1 : map dataDecl [2, 3]) $ implConj
[so1, so2] $ mkEqVar (dataDecl 2) $ qualData 3], cSig)
_ -> err
DatatypeBit dr -> case ex of
SimpleEntity (Entity Datatype iri) -> do
(odes, s) <- mapDataRange cSig dr 2
return ([mkVDataDecl [2] $ mkEqv odes $ mkMember
(qualData 2) $ uriToId iri], uniteCASLSign cSig s)
_ -> err
ClassDisjointUnion clsl -> case ex of
SimpleEntity (Entity Class iri) -> do
(decrs, s1) <- mapDescriptionList cSig 1 clsl
(decrsS, s2) <- mapDescriptionListP cSig 1 $ comPairs clsl clsl
let decrsP = map (\ (x, y) -> conjunct [x, y]) decrsS
mcls <- mapClassURI cSig iri $ mkNName 1
return ([mk1VDecl $ mkEqv mcls $ conjunct
[disjunct decrs, mkNC decrsP]], uniteL [cSig, s1, s2])
_ -> err
ClassHasKey opl dpl -> do
let ClassEntity ce = ex
lo = length opl
ld = length dpl
uptoOP = [2 .. lo + 1]
uptoDP = [lo + 2 .. lo + ld + 1]
tl = lo + ld + 2
ol <- mapM (\ (n, o) -> mapObjProp cSig o 1 n) $ zip uptoOP opl
nol <- mapM (\ (n, o) -> mapObjProp cSig o tl n) $ zip uptoOP opl
dl <- mapM (\ (n, d) -> mapDataProp cSig d 1 n) $ zip uptoDP dpl
ndl <- mapM (\ (n, d) -> mapDataProp cSig d tl n) $ zip uptoDP dpl
(keys, s) <-
mapKey cSig ce (ol ++ dl) (nol ++ ndl) tl (uptoOP ++ uptoDP) lo
return ([keys], uniteCASLSign cSig s)
ObjectSubPropertyChain oplst -> do
os <- mapM (\ cd -> mapSubObjPropChain cSig oplst cd 3) oplst
return (os, cSig)
keyDecl :: Int -> [Int] -> [VAR_DECL]
keyDecl h il = map thingDecl (take h il) ++ map dataDecl (drop h il)
mapKey :: CASLSign -> ClassExpression -> [FORMULA ()] -> [FORMULA ()]
-> Int -> [Int] -> Int -> Result ((FORMULA ()), CASLSign)
mapKey cSig ce pl npl p i h = do
(nce, s) <- mapDescription cSig ce 1
(c3, _) <- mapDescription cSig ce p
let un = mkForall [thingDecl p] $ implConj (c3 : npl)
$ mkStEq (qualThing p) $ qualThing 1
return (mkForall [thingDecl 1] $ mkImpl nce
$ mkExist (keyDecl h i) $ conjunct $ pl ++ [un], s)
mapAxioms :: CASLSign -> Axiom -> Result ([CASLFORMULA], CASLSign)
mapAxioms cSig (PlainAxiom ex fb) = case fb of
ListFrameBit rel lfb -> mapListFrameBit cSig ex rel lfb
AnnFrameBit _ afb -> mapAnnFrameBit cSig ex afb