StatAna.hs revision 792df0347edab377785d98c63e2be8e2ce0a8bde
{- |
Module : $Header$
Copyright : (c) Christian Maeder, Uni Bremen 2004-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : luecke@informatik.uni-bremen.de
Stability : provisional
Portability : portable
static analysis of modal logic parts
-}
module Modal.StatAna where
import Modal.AS_Modal
import Modal.Print_AS()
import Modal.ModalSign
import CASL.Sign
import CASL.MixfixParser
import CASL.StaticAna
import CASL.Utils
import CASL.AS_Basic_CASL
import CASL.ShowMixfix
import CASL.Overload
import CASL.Inject
import Common.AS_Annotation
import Common.GlobalAnnotations
import Common.Keywords
import qualified Data.Map as Map
import qualified Data.Set as Set
import Common.Lib.State
import Common.Id
import Common.Result
import Common.ExtSign
basicModalAnalysis
:: (BASIC_SPEC M_BASIC_ITEM M_SIG_ITEM M_FORMULA,
Sign M_FORMULA ModalSign, GlobalAnnos)
-> Result (BASIC_SPEC M_BASIC_ITEM M_SIG_ITEM M_FORMULA,
ExtSign (Sign M_FORMULA ModalSign) Symbol,
[Named (FORMULA M_FORMULA)])
basicModalAnalysis =
basicAnalysis minExpForm ana_M_BASIC_ITEM ana_M_SIG_ITEM ana_Mix
ana_Mix :: Mix M_BASIC_ITEM M_SIG_ITEM M_FORMULA ModalSign
ana_Mix = emptyMix
{ getSigIds = ids_M_SIG_ITEM
, putParen = mapM_FORMULA
, mixResolve = resolveM_FORMULA
, checkMix = noExtMixfixM
, putInj = injM_FORMULA }
-- rigid ops will also be part of the CASL signature
ids_M_SIG_ITEM :: M_SIG_ITEM -> IdSets
ids_M_SIG_ITEM si = case si of
Rigid_op_items _ al _ ->
(Set.unions $ map (ids_OP_ITEM . item) al, Set.empty)
Rigid_pred_items _ al _ ->
(Set.empty, Set.unions $ map (ids_PRED_ITEM . item) al)
mapMODALITY :: MODALITY -> MODALITY
mapMODALITY m = case m of
Term_mod t -> Term_mod $ mapTerm mapM_FORMULA t
_ -> m
mapM_FORMULA :: M_FORMULA -> M_FORMULA
mapM_FORMULA (BoxOrDiamond b m f ps) =
BoxOrDiamond b (mapMODALITY m) (mapFormula mapM_FORMULA f) ps
injMODALITY :: MODALITY -> MODALITY
injMODALITY m = case m of
Term_mod t -> Term_mod $ injTerm injM_FORMULA t
_ -> m
injM_FORMULA :: M_FORMULA -> M_FORMULA
injM_FORMULA (BoxOrDiamond b m f ps) =
BoxOrDiamond b (injMODALITY m) (injFormula injM_FORMULA f) ps
resolveMODALITY :: MixResolve MODALITY
resolveMODALITY ga ids m = case m of
Term_mod t -> fmap Term_mod $ resolveMixTrm mapM_FORMULA
resolveM_FORMULA ga ids t
_ -> return m
resolveM_FORMULA :: MixResolve M_FORMULA
resolveM_FORMULA ga ids cf = case cf of
BoxOrDiamond b m f ps -> do
nm <- resolveMODALITY ga ids m
nf <- resolveMixFrm mapM_FORMULA resolveM_FORMULA ga ids f
return $ BoxOrDiamond b nm nf ps
noExtMixfixM :: M_FORMULA -> Bool
noExtMixfixM mf =
let noInner = noMixfixF noExtMixfixM in
case mf of
BoxOrDiamond _ _ f _ -> noInner f
minExpForm :: Min M_FORMULA ModalSign
minExpForm s form =
let minMod md ps = case md of
Simple_mod i -> minMod (Term_mod (Mixfix_token i)) ps
Term_mod t -> let
r = do
t2 <- oneExpTerm minExpForm s t
let srt = term_sort t2
trm = Term_mod t2
if Map.member srt $ termModies $ extendedInfo s
then return trm
else Result [mkDiag Error
("unknown term modality sort '"
++ showId srt "' for term") t ]
$ Just trm
in case t of
Mixfix_token tm ->
if Map.member tm (modies $ extendedInfo s)
|| tokStr tm == emptyS
then return $ Simple_mod tm
else Result
[mkDiag Error "unknown modality" tm]
$ Just $ Simple_mod tm
Application (Op_name (Id [tm] [] _)) [] _ ->
if Map.member tm (modies $ extendedInfo s)
then return $ Simple_mod tm
else r
_ -> r
in case form of
BoxOrDiamond b m f ps ->
do nm <- minMod m ps
f2 <- minExpFORMULA minExpForm s f
return $ BoxOrDiamond b nm f2 ps
ana_M_SIG_ITEM :: Ana M_SIG_ITEM M_BASIC_ITEM M_SIG_ITEM M_FORMULA ModalSign
ana_M_SIG_ITEM mix mi =
case mi of
Rigid_op_items r al ps ->
do ul <- mapM (ana_OP_ITEM minExpForm mix) al
case r of
Rigid -> mapM_ ( \ aoi -> case item aoi of
Op_decl ops ty _ _ ->
mapM_ (updateExtInfo . addRigidOp (toOpType ty)) ops
Op_defn i par _ _ ->
updateExtInfo $ addRigidOp (toOpType $ headToType par)
i ) ul
_ -> return ()
return $ Rigid_op_items r ul ps
Rigid_pred_items r al ps ->
do ul <- mapM (ana_PRED_ITEM minExpForm mix) al
case r of
Rigid -> mapM_ ( \ aoi -> case item aoi of
Pred_decl ops ty _ ->
mapM_ (updateExtInfo . addRigidPred (toPredType ty)) ops
Pred_defn i (Pred_head args _) _ _ ->
updateExtInfo $ addRigidPred
(PredType $ sortsOfArgs args) i ) ul
_ -> return ()
return $ Rigid_pred_items r ul ps
addRigidOp :: OpType -> Id -> ModalSign -> Result ModalSign
addRigidOp ty i m = return
m { rigidOps = addOpTo i ty $ rigidOps m }
addRigidPred :: PredType -> Id -> ModalSign -> Result ModalSign
addRigidPred ty i m = return
m { rigidPreds = let rps = rigidPreds m in Map.insert i
(Set.insert ty $ Map.findWithDefault Set.empty i rps) rps }
ana_M_BASIC_ITEM
:: Ana M_BASIC_ITEM M_BASIC_ITEM M_SIG_ITEM M_FORMULA ModalSign
ana_M_BASIC_ITEM mix bi = do
case bi of
Simple_mod_decl al fs ps -> do
mapM_ ((updateExtInfo . preAddModId) . item) al
newFs <- mapAnM (ana_FORMULA False mix) fs
mapM_ ((updateExtInfo . addModId newFs) . item) al
return $ Simple_mod_decl al newFs ps
Term_mod_decl al fs ps -> do
e <- get
mapM_ ((updateExtInfo . preAddModSort e) . item) al
newFs <- mapAnM (ana_FORMULA True mix) fs
mapM_ ((updateExtInfo . addModSort newFs) . item) al
return $ Term_mod_decl al newFs ps
preAddModId :: SIMPLE_ID -> ModalSign -> Result ModalSign
preAddModId i m =
let ms = modies m in
if Map.member i ms then
Result [mkDiag Hint "repeated modality" i] $ Just m
else return m { modies = Map.insert i [] ms }
addModId :: [AnModFORM] -> SIMPLE_ID -> ModalSign -> Result ModalSign
addModId frms i m = return m { modies = Map.insert i frms $ modies m }
preAddModSort :: Sign M_FORMULA ModalSign -> SORT -> ModalSign
-> Result ModalSign
preAddModSort e i m =
let ms = termModies m
ds = hasSort e i
in if Map.member i ms || not (null ds) then
Result (mkDiag Hint "repeated term modality" i : ds) $ Just m
else return m { termModies = Map.insert i [] ms }
addModSort :: [AnModFORM] -> SORT -> ModalSign -> Result ModalSign
addModSort frms i m =
return m { termModies = Map.insert i frms $ termModies m }
ana_FORMULA
:: Bool
-> Ana (FORMULA M_FORMULA) M_BASIC_ITEM M_SIG_ITEM M_FORMULA ModalSign
ana_FORMULA b mix f =
if isPropForm b f then do
let ps = map (mkId . (: [])) $ Set.toList $ getFormPredToks f
pm <- gets predMap
mapM_ (addPred (emptyAnno ()) $ PredType []) ps
newGa <- gets globAnnos
let Result es m = resolveFormula mapM_FORMULA
resolveM_FORMULA newGa (mixRules mix) f
addDiags es
e <- get
phi <- case m of
Nothing -> return f
Just r -> do resultToState (minExpFORMULA minExpForm e) r
return r
e2 <- get
put e2 {predMap = pm}
return phi
else do addDiags [mkDiag Error
"Modality declarations may only contain propositional axioms"
f] >> return f
getFormPredToks :: FORMULA M_FORMULA -> Set.Set Token
getFormPredToks frm = case frm of
Quantification _ _ f _ -> getFormPredToks f
Conjunction fs _ -> Set.unions $ map getFormPredToks fs
Disjunction fs _ -> Set.unions $ map getFormPredToks fs
Implication f1 f2 _ _ ->
Set.union (getFormPredToks f1) $ getFormPredToks f2
Equivalence f1 f2 _ ->
Set.union (getFormPredToks f1) $ getFormPredToks f2
Negation f _ -> getFormPredToks f
Mixfix_formula (Mixfix_token t) -> Set.singleton t
Mixfix_formula t -> getTermPredToks t
ExtFORMULA (BoxOrDiamond _ _ f _) -> getFormPredToks f
Predication _ ts _ -> Set.unions $ map getTermPredToks ts
Definedness t _ -> getTermPredToks t
Existl_equation t1 t2 _ ->
Set.union (getTermPredToks t1) $ getTermPredToks t2
Strong_equation t1 t2 _ ->
Set.union (getTermPredToks t1) $ getTermPredToks t2
Membership t _ _ -> getTermPredToks t
_ -> Set.empty
getTermPredToks :: TERM M_FORMULA -> Set.Set Token
getTermPredToks trm = case trm of
Application _ ts _ -> Set.unions $ map getTermPredToks ts
Sorted_term t _ _ -> getTermPredToks t
Cast t _ _ -> getTermPredToks t
Conditional t1 f t2 _ -> Set.union (getTermPredToks t1) $
Set.union (getFormPredToks f) $ getTermPredToks t2
Mixfix_term ts -> Set.unions $ map getTermPredToks ts
Mixfix_parenthesized ts _ -> Set.unions $ map getTermPredToks ts
Mixfix_bracketed ts _ -> Set.unions $ map getTermPredToks ts
Mixfix_braced ts _ -> Set.unions $ map getTermPredToks ts
_ -> Set.empty
isPropForm :: Bool -> FORMULA M_FORMULA -> Bool
isPropForm b frm = case frm of
Quantification _ _ f _ -> b && isPropForm b f
Conjunction fs _ -> all (isPropForm b) fs
Disjunction fs _ -> all (isPropForm b) fs
Implication f1 f2 _ _ -> isPropForm b f1 && isPropForm b f2
Equivalence f1 f2 _ -> isPropForm b f1 && isPropForm b f2
Negation f _ -> isPropForm b f
Mixfix_formula _ -> True
ExtFORMULA (BoxOrDiamond _ _ f _) -> isPropForm b f
Predication _ _ _ -> True
False_atom _ -> True
True_atom _ -> True
_ -> False