AS_Modal.hs revision c36c47428b2f42fe09eab533acf6be19d6d9f259
$Id$
Author: Wiebke Herding
Year: 2003
Example spec:
spec sp =
props p,q,r
axioms
. p/\r => q
-}
module Modal.AS_Modal where
import Common.Id
import Common.AS_Annotation
data BASIC_SPEC = Basic_spec [Annoted BASIC_ITEMS]
deriving (Show,Eq)
data BASIC_ITEMS = Sig_items SIG_ITEMS
| Axiom_items [Annoted FORMULA] [Pos]
-- pos: dots
deriving (Show, Eq)
data SIG_ITEMS = Prop_items [Annoted PROP_ITEM] [Pos]
deriving (Show,Eq)
data PROP_ITEM = Prop_decl [PROP] [Pos]
-- pos: commas
deriving (Show,Eq)
data FORMULA = Conjunction [FORMULA] [Pos]
-- pos: "/\"s
| Disjunction [FORMULA] [Pos]
-- pos: "\/"s
| Implication FORMULA FORMULA [Pos]
-- pos: "=>"
| Equivalence FORMULA FORMULA [Pos]
-- pos: "<=>"
| Negation FORMULA [Pos]
-- pos: not
| Box FORMULA [Pos]
-- pos: "[]"
| Diamond FORMULA [Pos]
-- pos: "<>"
| Proposition PROP
deriving (Show,Eq)
type PROP = Id
type SYMB_ITEMS = Id
type SYMB_MAP_ITEMS = Id