PreComorphism.hs revision 223be434693e8c97e2522ac19155a284b3536035
2d0611ffc9f91c5fc2ddccb93f9a3d17791ae650takashi{- |
2d0611ffc9f91c5fc2ddccb93f9a3d17791ae650takashiModule : $Header$
dc0d8d65d35787d30a275895ccad8d8e1b58a5edndDescription : Maude Comorphisms
dc0d8d65d35787d30a275895ccad8d8e1b58a5edndCopyright : (c) Adrian Riesco, Facultad de Informatica UCM 2009
dc0d8d65d35787d30a275895ccad8d8e1b58a5edndLicense : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
0a94a19595172eac7686b569ed110be7fab8cb9dyoshiki
9124bd631acffcf0a44789785377735f172b4b7fgryzorMaintainer : ariesco@fdi.ucm.es
9124bd631acffcf0a44789785377735f172b4b7fgryzorStability : experimental
9124bd631acffcf0a44789785377735f172b4b7fgryzorPortability : portable
9124bd631acffcf0a44789785377735f172b4b7fgryzor
6ae232055d4d8a97267517c5e50074c2c819941andComorphism from Maude to CASL.
0a94a19595172eac7686b569ed110be7fab8cb9dyoshiki-}
6ae232055d4d8a97267517c5e50074c2c819941and
5652dbe450e4fcfdf36d4cfb42d7f2345ded29a4maczniakmodule Maude.PreComorphism where
5652dbe450e4fcfdf36d4cfb42d7f2345ded29a4maczniak
5652dbe450e4fcfdf36d4cfb42d7f2345ded29a4maczniakimport Data.Maybe
5652dbe450e4fcfdf36d4cfb42d7f2345ded29a4maczniakimport qualified Data.List as List
52ea316008e2581c8113441c9c341e5c65225f6anilgunimport qualified Data.Set as Set
52ea316008e2581c8113441c9c341e5c65225f6anilgunimport qualified Data.Map as Map
52ea316008e2581c8113441c9c341e5c65225f6anilgun
52ea316008e2581c8113441c9c341e5c65225f6anilgunimport qualified Maude.Sign as MSign
import qualified Maude.Sentence as MSentence
import qualified Maude.Morphism as MMorphism
import qualified Maude.AS_Maude as MAS
import qualified Maude.Symbol as MSym
import Maude.Meta.HasName
import qualified CASL.Sign as CSign
import qualified CASL.Morphism as CMorphism
import qualified CASL.AS_Basic_CASL as CAS
import CASL.StaticAna
import CASL.Logic_CASL
import Common.Id
import Common.Result
import Common.AS_Annotation
import Common.ProofUtils (charMap)
import qualified Common.Lib.Rel as Rel
import Comorphisms.GetPreludeLib (readLib)
import System.IO.Unsafe
import Static.GTheory
import Logic.Prover
import Logic.Coerce
type IdMap = Map.Map Id Id
type OpTransTuple = (CSign.OpMap, CSign.OpMap, [Named CAS.CASLFORMULA], Set.Set Component)
-- | generates a CASL morphism from a Maude morphism
mapMorphism :: MMorphism.Morphism -> Result (CMorphism.CASLMor)
mapMorphism morph =
let
src = MMorphism.source morph
tgt = MMorphism.target morph
mk = arrangeKinds (MSign.sorts src) (MSign.subsorts src)
cs = kindsFromMap mk
smap = MMorphism.sortMap morph
omap = MMorphism.opMap morph
smap' = applySortMap2CASLSorts smap cs
omap' = maudeOpMap2CASLOpMap mk omap
pmap = createPredMap mk smap
(src', _) = maude2casl src []
(tgt', _) = maude2casl tgt []
in return $ CMorphism.Morphism src' tgt' smap' omap' pmap ()
-- | translates the Maude morphism between operators into a CASL morpshim between
-- operators
maudeOpMap2CASLOpMap :: IdMap -> MMorphism.OpMap -> CMorphism.Op_map
maudeOpMap2CASLOpMap im = Map.foldWithKey (translateOpMapEntry im) Map.empty
-- | translates the mapping between two symbols representing operators into
-- a CASL operators map
translateOpMapEntry :: IdMap -> MSym.Symbol -> MSym.Symbol -> CMorphism.Op_map
-> CMorphism.Op_map
translateOpMapEntry im (MSym.Operator from ar co) (MSym.Operator to _ _) copm = copm'
where f = token2id . getName
g = \ x -> Map.findWithDefault (errorId "translate op map entry") (f x) im
ot = CSign.OpType CAS.Total (map g ar) (g co)
cop = (token2id from, ot)
to' = (token2id to, CAS.Total)
copm' = Map.insert cop to' copm
translateOpMapEntry _ _ _ _ = Map.empty
-- | generates a set of CASL symbol from a Maude Symbol
mapSymbol :: MSign.Sign -> MSym.Symbol -> Set.Set CSign.Symbol
mapSymbol sg (MSym.Sort q) = Set.singleton csym
where mk = arrangeKinds (MSign.sorts sg) (MSign.subsorts sg)
sym_id = token2id q
kind = Map.findWithDefault (errorId "map symbol") sym_id mk
pred_data = CSign.PredType [kind]
csym = CSign.Symbol sym_id $ CSign.PredAsItemType pred_data
mapSymbol sg (MSym.Operator q ar co) = Set.singleton csym
where mk = arrangeKinds (MSign.sorts sg) (MSign.subsorts sg)
q' = token2id q
ar' = map (maudeSort2caslId mk) ar
co' = token2id $ getName co
op_data = CSign.OpType CAS.Total ar' co'
csym = CSign.Symbol q' $ CSign.OpAsItemType op_data
mapSymbol _ _ = Set.empty
-- | returns the sort in CASL of the Maude sort symbol
maudeSort2caslId :: IdMap -> MSym.Symbol -> Id
maudeSort2caslId im sym = Map.findWithDefault (errorId "sort to id") (token2id $ getName sym) im
-- | creates the predicate map for the CASL morphism from the Maude sort map and
-- the map between sorts and kinds
createPredMap :: IdMap -> MMorphism.SortMap -> CMorphism.Pred_map
createPredMap im = Map.foldWithKey (createPredMap4sort im) Map.empty
-- | creates an entry of the predicate map for a single sort
createPredMap4sort :: IdMap -> MSym.Symbol -> MSym.Symbol -> CMorphism.Pred_map
-> CMorphism.Pred_map
createPredMap4sort im from to m = Map.insert key id_to m
where id_from = token2id $ getName from
id_to = token2id $ getName to
kind = Map.findWithDefault (errorId "predicate for sort") id_from im
key = (id_from, CSign.PredType [kind])
-- | computes the sort morphism of CASL from the sort morphism in Maude and the set
-- of kinds
applySortMap2CASLSorts :: MMorphism.SortMap -> Set.Set Id -> CMorphism.Sort_map
applySortMap2CASLSorts sm = Set.fold (applySortMap2CASLSort sm) Map.empty
-- | computes the morphism for a single kind
applySortMap2CASLSort :: MMorphism.SortMap -> Id -> CMorphism.Sort_map -> CMorphism.Sort_map
applySortMap2CASLSort sm sort csm = new_csm
where toks = getTokens sort
new_toks = map (rename sm) toks
new_sort = mkId new_toks
new_csm = if new_sort == sort
then csm
else Map.insert sort new_sort csm
-- | renames the sorts in a given kind
rename :: MMorphism.SortMap -> Token -> Token
rename sm tok = new_tok
where sym = MSym.Sort tok
sym' = if Map.member sym sm
then fromJust $ Map.lookup sym sm
else sym
new_tok = getName sym'
-- | translates a Maude sentence into a CASL formula
mapSentence :: MSign.Sign -> MSentence.Sentence -> Result CAS.CASLFORMULA
mapSentence sg sen@(MSentence.Equation eq) = case any MAS.owise ats of
False -> return $ sentence $ noOwiseSen2Formula mk named
True -> let
sg_sens = map (makeNamed "") $ Set.toList $ MSign.sentences sg
(no_owise_sens, _, _) = splitOwiseEqs sg_sens
no_owise_forms = map (noOwiseSen2Formula mk) no_owise_sens
trans = sentence $ owiseSen2Formula mk no_owise_forms named
in return trans
where mk = arrangeKinds (MSign.sorts sg) (MSign.subsorts sg)
MAS.Eq _ _ _ ats = eq
named = makeNamed "" sen
mapSentence sg sen@(MSentence.Membership mb) = return $ sentence form
where mk = arrangeKinds (MSign.sorts sg) (MSign.subsorts sg)
MAS.Mb _ _ _ _ = mb
named = makeNamed "" sen
form = mb_rl2formula mk named
mapSentence sg sen@(MSentence.Rule rl) = return $ sentence form
where mk = arrangeKinds (MSign.sorts sg) (MSign.subsorts sg)
MAS.Rl _ _ _ _ = rl
named = makeNamed "" sen
form = mb_rl2formula mk named
-- | applies maude2casl to compute the CASL signature and sentences from
-- the Maude ones, and wraps them into a Result datatype
mapTheory :: (MSign.Sign, [Named MSentence.Sentence])
-> Result (CSign.CASLSign, [Named CAS.CASLFORMULA])
mapTheory (sg, nsens) = return $ maude2casl sg nsens
-- | computes new signature and sentences of CASL associated to the
-- given Maude signature and sentences
maude2casl :: MSign.Sign -> [Named MSentence.Sentence]
-> (CSign.CASLSign, [Named CAS.CASLFORMULA])
maude2casl msign nsens = (csign { CSign.sortSet = cs,
CSign.opMap = cops',
CSign.assocOps = assoc_ops,
CSign.predMap = preds,
CSign.declaredSymbols = syms }, new_sens)
where csign = CSign.emptySign ()
mk = arrangeKinds (MSign.sorts msign) (MSign.subsorts msign)
cs = kindsFromMap mk
ks = kindPredicates mk
rp = rewPredicates ks cs
rs = rewPredicatesSens cs
ops = deleteUniversal $ MSign.ops msign
ksyms = kinds2syms cs
(cops, assoc_ops, ops_forms, comps) = translateOps mk ops
ctor_sen = [ctorSen False (cs, Rel.empty, comps)]
cops' = universalOps cs cops $ booleanImported ops
pred_forms = loadLibraries (MSign.sorts msign) ops
ops_syms = ops2symbols cops'
(no_owise_sens, owise_sens, mbs_rls_sens) = splitOwiseEqs nsens
no_owise_forms = map (noOwiseSen2Formula mk) no_owise_sens
owise_forms = map (owiseSen2Formula mk no_owise_forms) owise_sens
mb_rl_forms = map (mb_rl2formula mk) mbs_rls_sens
preds = Map.unionWith (Set.union) ks rp
preds_syms = preds2syms preds
syms = Set.union ksyms $ Set.union ops_syms preds_syms
new_sens = concat [rs, ops_forms, no_owise_forms, owise_forms, mb_rl_forms, ctor_sen, pred_forms]
loadLibraries :: MSign.SortSet -> MSign.OpMap -> [Named CAS.CASLFORMULA]
loadLibraries ss om = case natImported ss om of
False -> []
True -> let lib = head $ unsafePerformIO $ readLib "Maude/MaudeNumbers.casl"
in case lib of
G_theory lid _ _ thSens _ -> let sens = toNamedList thSens
in do
sens' <- coerceSens lid CASL "" sens
filter (not . ctorCons) sens'
ctorCons :: Named CAS.CASLFORMULA -> Bool
ctorCons f = case sentence f of
CAS.Sort_gen_ax _ _ -> True
_ -> False
booleanImported :: MSign.OpMap -> Bool
booleanImported = Map.member (mkSimpleId "if_then_else_fi")
natImported :: MSign.SortSet -> MSign.OpMap -> Bool
natImported ss _ = Set.member (MSym.Sort $ mkSimpleId "Nat") ss
deleteUniversal :: MSign.OpMap -> MSign.OpMap
deleteUniversal om = om5
where om1 = Map.delete (mkSimpleId "if_then_else_fi") om
om2 = Map.delete (mkSimpleId "_==_") om1
om3 = Map.delete (mkSimpleId "_=/=_") om2
om4 = Map.delete (mkSimpleId "upTerm") om3
om5 = Map.delete (mkSimpleId "downTerm") om4
universalOps :: Set.Set Id -> CSign.OpMap -> Bool -> CSign.OpMap
universalOps kinds om True = Set.fold universalOpKind om kinds
universalOps _ om False = om
universalOpKind :: Id -> CSign.OpMap -> CSign.OpMap
universalOpKind kind om = om3
where if_id = str2id "if_then_else_fi"
double_eq_id = str2id "_==_"
neg_double_eq_id = str2id "_=/=_"
bool_id = str2id "Bool"
if_opt = Set.singleton $ CSign.OpType CAS.Total [bool_id, kind, kind] kind
eq_opt = Set.singleton $ CSign.OpType CAS.Total [kind, kind] bool_id
om1 = Map.insertWith Set.union if_id if_opt om
om2 = Map.insertWith Set.union double_eq_id eq_opt om1
om3 = Map.insertWith Set.union neg_double_eq_id eq_opt om2
universalSens :: Set.Set Id -> [Named CAS.CASLFORMULA]
universalSens = Set.fold universalSensKind []
universalSensKind :: Id -> [Named CAS.CASLFORMULA] -> [Named CAS.CASLFORMULA]
universalSensKind kind acc = concat [iss, eqs, neqs, acc]
where iss = ifSens kind
eqs = equalitySens kind
neqs = nonEqualitySens kind
ifSens :: Id -> [Named CAS.CASLFORMULA]
ifSens kind = [form'', neg_form'']
where v1 = newVarIndex 1 kind
v2 = newVarIndex 2 kind
bk = str2id "Bool"
bv = newVarIndex 2 bk
true_type = CAS.Op_type CAS.Total [] bk nullRange
true_id = CAS.Qual_op_name (str2id "true") true_type nullRange
true_term = CAS.Application true_id [] nullRange
if_type = CAS.Op_type CAS.Total [bk, kind, kind] kind nullRange
if_name = str2id "if_then_else_fi"
if_id = CAS.Qual_op_name if_name if_type nullRange
if_term = CAS.Application if_id [bv, v1, v2] nullRange
prem = CAS.Strong_equation bv true_term nullRange
concl = CAS.Strong_equation if_term v1 nullRange
form = CAS.Implication prem concl True nullRange
form' = quantifyUniversally form
neg_prem = CAS.Negation prem nullRange
neg_concl = CAS.Strong_equation if_term v2 nullRange
neg_form = CAS.Implication neg_prem neg_concl True nullRange
neg_form' = quantifyUniversally neg_form
name1 = show kind ++ "_if_true"
name2 = show kind ++ "_if_false"
form'' = makeNamed name1 form'
neg_form'' = makeNamed name2 neg_form'
equalitySens :: Id -> [Named CAS.CASLFORMULA]
equalitySens kind = [form'', comp_form'']
where v1 = newVarIndex 1 kind
v2 = newVarIndex 2 kind
bk = str2id "Bool"
b_type = CAS.Op_type CAS.Total [] bk nullRange
true_id = CAS.Qual_op_name (str2id "true") b_type nullRange
true_term = CAS.Application true_id [] nullRange
false_id = CAS.Qual_op_name (str2id "false") b_type nullRange
false_term = CAS.Application false_id [] nullRange
prem = CAS.Strong_equation v1 v2 nullRange
double_eq_type = CAS.Op_type CAS.Total [kind, kind] kind nullRange
double_eq_name = str2id "_==_"
double_eq_id = CAS.Qual_op_name double_eq_name double_eq_type nullRange
double_eq_term = CAS.Application double_eq_id [v1, v2] nullRange
concl = CAS.Strong_equation double_eq_term true_term nullRange
form = CAS.Implication prem concl True nullRange
form' = quantifyUniversally form
neg_prem = CAS.Negation prem nullRange
new_concl = CAS.Strong_equation double_eq_term false_term nullRange
comp_form = CAS.Implication neg_prem new_concl True nullRange
comp_form' = quantifyUniversally comp_form
name1 = show kind ++ "_==_true"
name2 = show kind ++ "_==_false"
form'' = makeNamed name1 form'
comp_form'' = makeNamed name2 comp_form'
nonEqualitySens :: Id -> [Named CAS.CASLFORMULA]
nonEqualitySens kind = [form'', comp_form'']
where v1 = newVarIndex 1 kind
v2 = newVarIndex 2 kind
bk = str2id "Bool"
b_type = CAS.Op_type CAS.Total [] bk nullRange
true_id = CAS.Qual_op_name (str2id "true") b_type nullRange
true_term = CAS.Application true_id [] nullRange
false_id = CAS.Qual_op_name (str2id "false") b_type nullRange
false_term = CAS.Application false_id [] nullRange
prem = CAS.Strong_equation v1 v2 nullRange
double_eq_type = CAS.Op_type CAS.Total [kind, kind] kind nullRange
double_eq_name = str2id "_==_"
double_eq_id = CAS.Qual_op_name double_eq_name double_eq_type nullRange
double_eq_term = CAS.Application double_eq_id [v1, v2] nullRange
concl = CAS.Strong_equation double_eq_term false_term nullRange
form = CAS.Implication prem concl True nullRange
form' = quantifyUniversally form
neg_prem = CAS.Negation prem nullRange
new_concl = CAS.Strong_equation double_eq_term true_term nullRange
comp_form = CAS.Implication neg_prem new_concl True nullRange
comp_form' = quantifyUniversally comp_form
name1 = show kind ++ "_=/=_false"
name2 = show kind ++ "_=/=_true"
form'' = makeNamed name1 form'
comp_form'' = makeNamed name2 comp_form'
-- | translates the Maude operator map into a tuple of CASL operators, CASL
-- associative operators and the formulas generated by the operator attributes
-- and the membership induced from each Maude operator
translateOps :: IdMap -> MSign.OpMap -> OpTransTuple
translateOps im = Map.fold (translateOpDeclSet im) (Map.empty, Map.empty, [], Set.empty)
-- | translates an operator declaration set into a tern as described above
translateOpDeclSet :: IdMap -> MSign.OpDeclSet -> OpTransTuple -> OpTransTuple
translateOpDeclSet im ods tpl = Set.fold (translateOpDecl im) tpl ods
translateOpDecl :: IdMap -> MSign.OpDecl -> OpTransTuple -> OpTransTuple
translateOpDecl im (syms, ats) (ops, assoc_ops, forms, cs) = (ops', assoc_ops', forms', cs')
where predOps = ops2pred im syms
sym = head $ Set.toList syms
(cop_id, ot) = fromJust $ maudeSym2CASLOp im sym
cop_type = Set.singleton ot
forms' = forms ++ predOps
ops' = Map.insertWith (Set.union) cop_id cop_type ops
assoc_ops' = if any MAS.assoc ats
then Map.insertWith (Set.union) cop_id cop_type assoc_ops
else assoc_ops
cs' = if any MAS.ctor ats
then Set.insert (Component cop_id ot) cs
else cs
-- | translates a Maude operator symbol into a pair with the id of the operator
-- and its CASL type
maudeSym2CASLOp :: IdMap -> MSym.Symbol -> Maybe (Id, CSign.OpType)
maudeSym2CASLOp im (MSym.Operator op ar co) = Just (token2id op, ot)
where f = token2id . getName
g = \ x -> Map.findWithDefault (errorId "Maude symbol 2 CASL symbol") (f x) im
ot = CSign.OpType CAS.Total (map g ar) (g co)
maudeSym2CASLOp _ _ = Nothing
-- | generates the predicates associated to each operator declaration in Maude
-- due to the associated membership if the coarity is a sort and not a kind
ops2pred :: IdMap -> MSym.SymbolSet -> [Named CAS.CASLFORMULA]
ops2pred im = Set.fold (op2pred im) []
-- | generates the membership predicate associated to an operator
op2pred :: IdMap -> MSym.Symbol -> [Named CAS.CASLFORMULA] -> [Named CAS.CASLFORMULA]
op2pred im (MSym.Operator op ar co) acc = case co of
MSym.Sort s -> let
co' = token2id s
kind = Map.findWithDefault (errorId "op-mb to predicate") co' im
f = \ m x -> Map.lookup (token2id $ getName x) m
ar' = mapMaybe (f im) ar
op_type = CAS.Op_type CAS.Total ar' kind nullRange
op' = CAS.Qual_op_name (token2id op) op_type nullRange
(vars, prems) = ops2predPremises im ar 0
pred_type = CAS.Pred_type [kind] nullRange
pred_name = CAS.Qual_pred_name co' pred_type nullRange
op_term = CAS.Application op' vars nullRange
op_pred = CAS.Predication pred_name [op_term] nullRange
conj_form = createConjForm prems
imp_form = if null prems
then op_pred
else CAS.Implication conj_form op_pred True nullRange
q_form = quantifyUniversally imp_form
final_form = makeNamed "" q_form
in final_form : acc
_ -> acc
op2pred _ _ acc = acc
-- | creates a conjuctive formula distinguishing the size of the list
createConjForm :: [CAS.CASLFORMULA] -> CAS.CASLFORMULA
createConjForm [] = CAS.True_atom nullRange
createConjForm [a] = a
createConjForm fs = CAS.Conjunction fs nullRange
-- | generates the predicates asserting the "true" sort of the operator if all
-- the arguments have the correct sort
ops2predPremises :: IdMap -> [MSym.Symbol] -> Int -> ([CAS.CASLTERM], [CAS.CASLFORMULA])
ops2predPremises im (MSym.Sort s : ss) i = (var : terms, form : forms)
where s' = token2id s
kind = Map.findWithDefault (errorId "mb of op as predicate") s' im
pred_type = CAS.Pred_type [kind] nullRange
pred_name = CAS.Qual_pred_name s' pred_type nullRange
var = newVarIndex i kind
form = CAS.Predication pred_name [var] nullRange
(terms, forms) = ops2predPremises im ss (i + 1)
ops2predPremises im (MSym.Kind k : ss) i = (var : terms, forms)
where k' = token2id k
kind = Map.findWithDefault (errorId "mb of op as predicate") k' im
var = newVarIndex i kind
(terms, forms) = ops2predPremises im ss (i + 1)
ops2predPremises _ _ _ = ([], [])
-- | traverses the Maude sentences, returning a pair of list of sentences.
-- The first list in the pair are the equations without the attribute "owise",
-- while the second one are the equations with this attribute
splitOwiseEqs :: [Named MSentence.Sentence] ->
([Named MSentence.Sentence], [Named MSentence.Sentence], [Named MSentence.Sentence])
splitOwiseEqs [] = ([], [], [])
splitOwiseEqs (s : ss) = res
where (no_owise_sens, owise_sens, mbs_rls) = splitOwiseEqs ss
sen = sentence s
res = case sen of
MSentence.Equation (MAS.Eq _ _ _ ats) -> case any MAS.owise ats of
True -> (no_owise_sens, s : owise_sens, mbs_rls)
False -> (s : no_owise_sens, owise_sens, mbs_rls)
_ -> (no_owise_sens, owise_sens, s : mbs_rls)
-- | translates a Maude equation defined without the "owise" attribute into
-- a CASL formula
noOwiseSen2Formula :: IdMap -> Named MSentence.Sentence
-> Named CAS.CASLFORMULA
noOwiseSen2Formula im s = s'
where MSentence.Equation eq = sentence s
sen' = noOwiseEq2Formula im eq
s' = s { sentence = sen' }
-- | translates a Maude equation defined with the "owise" attribute into
-- a CASL formula
owiseSen2Formula :: IdMap -> [Named CAS.CASLFORMULA]
-> Named MSentence.Sentence -> Named CAS.CASLFORMULA
owiseSen2Formula im owise_forms s = s'
where MSentence.Equation eq = sentence s
sen' = owiseEq2Formula im owise_forms eq
s' = s { sentence = sen' }
-- | translates a Maude membership or rule into a CASL formula
mb_rl2formula :: IdMap -> Named MSentence.Sentence -> Named CAS.CASLFORMULA
mb_rl2formula im s = case sen of
MSentence.Membership mb -> let
mb' = mb2formula im mb
in s { sentence = mb' }
MSentence.Rule rl -> let
rl' = rl2formula im rl
in s { sentence = rl' }
_ -> makeNamed "" $ CAS.False_atom nullRange
where sen = sentence s
-- | generates a new variable qualified with the given number
newVarIndex :: Int -> Id -> CAS.CASLTERM
newVarIndex i sort = CAS.Qual_var var sort nullRange
where var = mkSimpleId $ "V" ++ show i
-- | generates a new variable
newVar :: Id -> CAS.CASLTERM
newVar sort = CAS.Qual_var var sort nullRange
where var = mkSimpleId "V"
-- | Id for the rew predicate
rewID :: Id
rewID = token2id $ mkSimpleId "rew"
-- | translate a Maude equation without the "owise" attribute into a CASL formula
noOwiseEq2Formula :: IdMap -> MAS.Equation -> CAS.CASLFORMULA
noOwiseEq2Formula im (MAS.Eq t t' [] _) = quantifyUniversally form
where ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
form = CAS.Strong_equation ct ct' nullRange
noOwiseEq2Formula im (MAS.Eq t t' conds@(_:_) _) = quantifyUniversally form
where ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
conds_form = conds2formula im conds
concl_form = CAS.Strong_equation ct ct' nullRange
form = CAS.Implication conds_form concl_form True nullRange
-- | transforms a Maude equation defined with the otherwise attribute into
-- a CASL formula
owiseEq2Formula :: IdMap -> [Named CAS.CASLFORMULA] -> MAS.Equation
-> CAS.CASLFORMULA
owiseEq2Formula im no_owise_form eq = form
where (eq_form, vars) = noQuantification $ noOwiseEq2Formula im eq
(op, ts, _) = fromJust $ getLeftApp eq_form
ex_form = existencialNegationOtherEqs op ts no_owise_form
imp_form = CAS.Implication ex_form eq_form True nullRange
form = CAS.Quantification CAS.Universal vars imp_form nullRange
-- | generates a conjunction of negation of existencial quantifiers
existencialNegationOtherEqs :: CAS.OP_SYMB -> [CAS.CASLTERM] ->
[Named CAS.CASLFORMULA] -> CAS.CASLFORMULA
existencialNegationOtherEqs op ts forms = form
where ex_forms = foldr ((++) . existencialNegationOtherEq op ts) [] forms
form = if length ex_forms > 1
then CAS.Conjunction ex_forms nullRange
else head ex_forms
-- | given a formula, if it refers to the same operator indicated by the parameters
-- the predicate creates a list with the negation of the existence of variables that
-- match the pattern described in the formula. In other case it returns an empty list
existencialNegationOtherEq :: CAS.OP_SYMB -> [CAS.CASLTERM] ->
Named CAS.CASLFORMULA -> [CAS.CASLFORMULA]
existencialNegationOtherEq req_op terms form = case ok of
False -> []
True -> let
(_, ts, conds) = fromJust tpl
ts' = qualifyExVarsTerms ts
conds' = qualifyExVarsForms conds
prems = (createEqs ts' terms) ++ conds'
conj_form = CAS.Conjunction prems nullRange
ex_form = if vars' /= []
then CAS.Quantification CAS.Existential vars' conj_form nullRange
else conj_form
neg_form = CAS.Negation ex_form nullRange
in [neg_form]
where (inner_form, vars) = noQuantification $ sentence form
vars' = qualifyExVars vars
tpl = getLeftApp inner_form
ok = case tpl of
Nothing -> False
Just _ -> let (op, ts, _) = fromJust tpl
in req_op == op && length terms == length ts
-- | qualifies the variables in a list of formulas with the suffix "_ex" to
-- distinguish them from the variables already bound
qualifyExVarsForms :: [CAS.CASLFORMULA] -> [CAS.CASLFORMULA]
qualifyExVarsForms = map qualifyExVarsForm
-- | qualifies the variables in a formula with the suffix "_ex" to distinguish them
-- from the variables already bound
qualifyExVarsForm :: CAS.CASLFORMULA -> CAS.CASLFORMULA
qualifyExVarsForm (CAS.Strong_equation t t' r) = CAS.Strong_equation qt qt' r
where qt = qualifyExVarsTerm t
qt' = qualifyExVarsTerm t'
qualifyExVarsForm (CAS.Predication op ts r) = CAS.Predication op ts' r
where ts' = qualifyExVarsTerms ts
qualifyExVarsForm f = f
-- | qualifies the variables in a list of terms with the suffix "_ex" to
-- distinguish them from the variables already bound
qualifyExVarsTerms :: [CAS.CASLTERM] -> [CAS.CASLTERM]
qualifyExVarsTerms = map qualifyExVarsTerm
-- | qualifies the variables in a term with the suffix "_ex" to distinguish them
-- from the variables already bound
qualifyExVarsTerm :: CAS.CASLTERM -> CAS.CASLTERM
qualifyExVarsTerm (CAS.Qual_var var sort r) = CAS.Qual_var (qualifyExVarAux var) sort r
qualifyExVarsTerm (CAS.Application op ts r) = CAS.Application op ts' r
where ts' = map qualifyExVarsTerm ts
qualifyExVarsTerm (CAS.Sorted_term t s r) = CAS.Sorted_term (qualifyExVarsTerm t) s r
qualifyExVarsTerm (CAS.Cast t s r) = CAS.Cast (qualifyExVarsTerm t) s r
qualifyExVarsTerm (CAS.Conditional t1 f t2 r) = CAS.Conditional t1' f t2' r
where t1' = qualifyExVarsTerm t1
t2' = qualifyExVarsTerm t2
qualifyExVarsTerm (CAS.Mixfix_term ts) = CAS.Mixfix_term ts'
where ts' = map qualifyExVarsTerm ts
qualifyExVarsTerm (CAS.Mixfix_parenthesized ts r) = CAS.Mixfix_parenthesized ts' r
where ts' = map qualifyExVarsTerm ts
qualifyExVarsTerm (CAS.Mixfix_bracketed ts r) = CAS.Mixfix_bracketed ts' r
where ts' = map qualifyExVarsTerm ts
qualifyExVarsTerm (CAS.Mixfix_braced ts r) = CAS.Mixfix_braced ts' r
where ts' = map qualifyExVarsTerm ts
qualifyExVarsTerm t = t
-- | qualifies a list of variables with the suffix "_ex" to
-- distinguish them from the variables already bound
qualifyExVars :: [CAS.VAR_DECL] -> [CAS.VAR_DECL]
qualifyExVars = map qualifyExVar
-- | qualifies a variable with the suffix "_ex" to distinguish it from
-- the variables already bound
qualifyExVar :: CAS.VAR_DECL -> CAS.VAR_DECL
qualifyExVar (CAS.Var_decl vars s r) = CAS.Var_decl vars' s r
where vars' = map qualifyExVarAux vars
-- | qualifies a token with the suffix "_ex"
qualifyExVarAux :: Token -> Token
qualifyExVarAux var = mkSimpleId $ show var ++ "_ex"
-- | creates a list of strong equalities from two lists of terms
createEqs :: [CAS.CASLTERM] -> [CAS.CASLTERM] -> [CAS.CASLFORMULA]
createEqs (t1 : ts1) (t2 : ts2) = CAS.Strong_equation t1 t2 nullRange : ls
where ls = createEqs ts1 ts2
createEqs _ _ = []
-- | extracts the operator at the top and the arguments of the lefthand side
-- in a strong equation
getLeftApp :: CAS.CASLFORMULA -> Maybe (CAS.OP_SYMB, [CAS.CASLTERM], [CAS.CASLFORMULA])
getLeftApp (CAS.Strong_equation term _ _) = case getLeftAppTerm term of
Nothing -> Nothing
Just (op, ts) -> Just (op, ts, [])
getLeftApp (CAS.Implication prem concl _ _) = case getLeftApp concl of
Nothing -> Nothing
Just (op, ts, _) -> Just (op, ts, conds)
where conds = getPremisesImplication prem
getLeftApp _ = Nothing
-- | extracts the operator at the top and the arguments of the lefthand side
-- in an application term
getLeftAppTerm :: CAS.CASLTERM -> Maybe (CAS.OP_SYMB, [CAS.CASLTERM])
getLeftAppTerm (CAS.Application op ts _) = Just (op, ts)
getLeftAppTerm _ = Nothing
-- | extracts the formulas of the given premise, distinguishing whether it is
-- a conjunction or not
getPremisesImplication :: CAS.CASLFORMULA -> [CAS.CASLFORMULA]
getPremisesImplication (CAS.Conjunction forms _) = forms
getPremisesImplication form = [form]
-- | translate a Maude membership into a CASL formula
mb2formula :: IdMap -> MAS.Membership -> CAS.CASLFORMULA
mb2formula im (MAS.Mb t s [] _) = quantifyUniversally form
where ct = maudeTerm2caslTerm im t
s' = token2id $ getName s
kind = Map.findWithDefault (errorId "mb to formula") s' im
pred_type = CAS.Pred_type [kind] nullRange
pred_name = CAS.Qual_pred_name s' pred_type nullRange
form = CAS.Predication pred_name [ct] nullRange
mb2formula im (MAS.Mb t s conds@(_ : _) _) = quantifyUniversally form
where ct = maudeTerm2caslTerm im t
s' = token2id $ getName s
kind = Map.findWithDefault (errorId "mb to formula") s' im
pred_type = CAS.Pred_type [kind] nullRange
pred_name = CAS.Qual_pred_name s' pred_type nullRange
conds_form = conds2formula im conds
concl_form = CAS.Predication pred_name [ct] nullRange
form = CAS.Implication conds_form concl_form True nullRange
-- | translate a Maude rule into a CASL formula
rl2formula :: IdMap -> MAS.Rule -> CAS.CASLFORMULA
rl2formula im (MAS.Rl t t' [] _) = quantifyUniversally form
where ty = token2id $ getName $ MAS.getTermType t
kind = Map.findWithDefault (errorId "rl to formula") ty im
pred_type = CAS.Pred_type [kind, kind] nullRange
pred_name = CAS.Qual_pred_name rewID pred_type nullRange
ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
form = CAS.Predication pred_name [ct, ct'] nullRange
rl2formula im (MAS.Rl t t' conds@(_:_) _) = quantifyUniversally form
where ty = token2id $ getName $ MAS.getTermType t
kind = Map.findWithDefault (errorId "rl to formula") ty im
pred_type = CAS.Pred_type [kind, kind] nullRange
pred_name = CAS.Qual_pred_name rewID pred_type nullRange
ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
conds_form = conds2formula im conds
concl_form = CAS.Predication pred_name [ct, ct'] nullRange
form = CAS.Implication conds_form concl_form True nullRange
-- | translate a conjunction of Maude conditions to a CASL formula
conds2formula :: IdMap -> [MAS.Condition] -> CAS.CASLFORMULA
conds2formula im conds = CAS.Conjunction forms nullRange
where forms = map (cond2formula im) conds
-- | translate a single Maude condition to a CASL formula
cond2formula :: IdMap -> MAS.Condition -> CAS.CASLFORMULA
cond2formula im (MAS.EqCond t t') = CAS.Strong_equation ct ct' nullRange
where ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
cond2formula im (MAS.MatchCond t t') = CAS.Strong_equation ct ct' nullRange
where ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
cond2formula im (MAS.MbCond t s) = CAS.Predication pred_name [ct] nullRange
where ct = maudeTerm2caslTerm im t
s' = token2id $ getName s
kind = Map.findWithDefault (errorId "mb cond to formula") s' im
pred_type = CAS.Pred_type [kind] nullRange
pred_name = CAS.Qual_pred_name s' pred_type nullRange
cond2formula im (MAS.RwCond t t') = CAS.Predication pred_name [ct, ct'] nullRange
where ct = maudeTerm2caslTerm im t
ct' = maudeTerm2caslTerm im t'
ty = token2id $ getName $ MAS.getTermType t
kind = Map.findWithDefault (errorId "rw cond to formula") ty im
pred_type = CAS.Pred_type [kind, kind] nullRange
pred_name = CAS.Qual_pred_name rewID pred_type nullRange
-- | translate a Maude term into a CASL term
maudeTerm2caslTerm :: IdMap -> MAS.Term -> CAS.CASLTERM
maudeTerm2caslTerm im (MAS.Var q ty) = CAS.Qual_var q kind nullRange
where kind = Map.findWithDefault (errorId "maude term to CASL term") (token2id $ getName ty) im
maudeTerm2caslTerm im (MAS.Const q ty) = CAS.Application op [] nullRange
where name = token2id q
ty' = token2id $ getName ty
kind = Map.findWithDefault (errorId "maude term to CASL term") ty' im
op_type = CAS.Op_type CAS.Total [] kind nullRange
op = CAS.Qual_op_name name op_type nullRange
maudeTerm2caslTerm im (MAS.Apply q ts ty) = CAS.Application op tts nullRange
where name = token2id q
tts = map (maudeTerm2caslTerm im) ts
ty' = token2id $ getName ty
kind = Map.findWithDefault (errorId "maude term to CASL term") ty' im
types_tts = getTypes tts
op_type = CAS.Op_type CAS.Total types_tts kind nullRange
op = CAS.Qual_op_name name op_type nullRange
getTypes :: [CAS.CASLTERM] -> [Id]
getTypes = mapMaybe getType
getType :: CAS.CASLTERM -> Maybe Id
getType (CAS.Qual_var _ kind _) = Just kind
getType (CAS.Application op _ _) = case op of
CAS.Qual_op_name _ (CAS.Op_type _ _ kind _) _ -> Just kind
_ -> Nothing
getType _ = Nothing
rewPredicatesSens :: Set.Set Id -> [Named CAS.CASLFORMULA]
rewPredicatesSens = Set.fold rewPredicateSens []
rewPredicateSens :: Id -> [Named CAS.CASLFORMULA] -> [Named CAS.CASLFORMULA]
rewPredicateSens kind acc = [ref, trans] ++ acc
where ref = reflSen kind
trans = transSen kind
-- | creates the reflexivity predicate for the given kind
reflSen :: Id -> Named CAS.CASLFORMULA
reflSen kind = makeNamed name $ quantifyUniversally form
where v = newVar kind
pred_type = CAS.Pred_type [kind, kind] nullRange
pn = CAS.Qual_pred_name rewID pred_type nullRange
form = CAS.Predication pn [v, v] nullRange
name = "rew_refl_" ++ show kind
-- | creates the transitivity predicate for the given kind
transSen :: Id -> Named CAS.CASLFORMULA
transSen kind = makeNamed name $ quantifyUniversally form
where v1 = newVarIndex 1 kind
v2 = newVarIndex 2 kind
v3 = newVarIndex 3 kind
pred_type = CAS.Pred_type [kind, kind] nullRange
pn = CAS.Qual_pred_name rewID pred_type nullRange
prem1 = CAS.Predication pn [v1, v2] nullRange
prem2 = CAS.Predication pn [v2, v3] nullRange
concl = CAS.Predication pn [v1, v3] nullRange
conj_form = CAS.Conjunction [prem1, prem2] nullRange
form = CAS.Implication conj_form concl True nullRange
name = "rew_trans_" ++ show kind
-- | generate the predicates for the rewrites
rewPredicates :: Map.Map Id (Set.Set CSign.PredType) -> Set.Set Id
-> Map.Map Id (Set.Set CSign.PredType)
rewPredicates m = Set.fold rewPredicate m
rewPredicate :: Id -> Map.Map Id (Set.Set CSign.PredType)
-> Map.Map Id (Set.Set CSign.PredType)
rewPredicate kind m = Map.insertWith (Set.union) rewID ar m
where ar = Set.singleton $ CSign.PredType [kind, kind]
-- | create the predicates that assign sorts to each term
kindPredicates :: IdMap -> Map.Map Id (Set.Set CSign.PredType)
kindPredicates = Map.foldWithKey kindPredicate Map.empty
-- | create the predicates that assign the current sort to the
-- corresponding terms
kindPredicate :: Id -> Id -> Map.Map Id (Set.Set CSign.PredType)
-> Map.Map Id (Set.Set CSign.PredType)
kindPredicate sort kind mis = case sort == (str2id "Universal") of
True -> mis
False -> let ar = Set.singleton $ CSign.PredType [kind]
in Map.insertWith (Set.union) sort ar mis
-- | extract the kinds from the map of id's
kindsFromMap :: IdMap -> Set.Set Id
kindsFromMap = Map.fold Set.insert Set.empty
-- | return a map where each sort is mapped to its kind, both of them
-- already converted to Id
arrangeKinds :: MSign.SortSet -> MSign.SubsortRel -> IdMap
arrangeKinds ss r = arrangeKindsList (Set.toList ss) r Map.empty
-- | traverse the sorts and creates a table that assigns to each sort its kind
arrangeKindsList :: [MSym.Symbol] -> MSign.SubsortRel -> IdMap -> IdMap
arrangeKindsList [] _ m = m
arrangeKindsList l@(s : _) r m = arrangeKindsList not_rel r m'
where tops = List.sort $ getTop r s
tc = Rel.transClosure r
(rel, not_rel) = sameKindList s tc l
f = \ x y z -> Map.insert (sym2id y) (sort2id x) z
m' = foldr (f tops) m rel
-- | creates two list distinguishing in the first componente the symbols
-- with the same kind than the given one and in the second one the
-- symbols with different kind
sameKindList :: MSym.Symbol -> MSign.SubsortRel -> [MSym.Symbol]
-> ([MSym.Symbol], [MSym.Symbol])
sameKindList _ _ [] = ([], [])
sameKindList t r (t' : ts) = if MSym.sameKind r t t'
then (t' : hold, not_hold)
else (hold, t' : not_hold)
where (hold, not_hold) = sameKindList t r ts
-- | transform the set of Maude sorts in a set of CASL sorts, including
-- only one sort for each kind.
sortsTranslation :: MSign.SortSet -> MSign.SubsortRel -> Set.Set Id
sortsTranslation ss r = sortsTranslationList (Set.toList ss) r
-- | transform a list representing the Maude sorts in a set of CASL sorts,
-- including only one sort for each kind.
sortsTranslationList :: [MSym.Symbol] -> MSign.SubsortRel -> Set.Set Id
sortsTranslationList [] _ = Set.empty
sortsTranslationList (s : ss) r = Set.insert (sort2id tops) res
where tops@(top : _) = List.sort $ getTop r s
ss' = deleteRelated ss top r
res = sortsTranslation ss' r
-- | return the maximal elements from the sort relation
getTop :: MSign.SubsortRel -> MSym.Symbol -> [MSym.Symbol]
getTop r tok = case succs of
[] -> [tok]
toks@(_:_) -> foldr ((++) . (getTop r)) [] toks
where succs = Set.toList $ Rel.succs r tok
-- | delete from the list of sorts those in the same kind that the parameter
deleteRelated :: [MSym.Symbol] -> MSym.Symbol -> MSign.SubsortRel -> MSign.SortSet
deleteRelated ss sym r = foldr (f sym tc) Set.empty ss
where tc = Rel.transClosure r
f = \ sort trC x y -> if MSym.sameKind trC sort x
then y
else Set.insert x y
-- | build an Id from a token with the function mkId
token2id :: Token -> Id
token2id t = mkId ts
where ts = maudeSymbol2validCASLSymbol t
-- | build an Id from a Maude symbol
sym2id :: MSym.Symbol -> Id
sym2id = token2id . getName
str2id :: String -> Id
str2id = token2id . mkSimpleId
-- | build an Id from a list of sorts, taking the first from the ordered list
sort2id :: [MSym.Symbol] -> Id
sort2id syms = mkId sym''
where sym = head $ List.sort syms
sym' = getName sym
sym'' = maudeSymbol2validCASLSymbol sym'
-- | add universal quantification of all variables in the formula
quantifyUniversally :: CAS.CASLFORMULA -> CAS.CASLFORMULA
quantifyUniversally form = if null var_decl
then form
else CAS.Quantification CAS.Universal var_decl form nullRange
where vars = getVars form
var_decl = listVarDecl vars
-- | traverses a map with sorts as keys and sets of variables as value and creates
-- a list of variable declarations
listVarDecl :: Map.Map Id (Set.Set Token) -> [CAS.VAR_DECL]
listVarDecl = Map.foldWithKey f []
where f = \ sort var_set acc -> CAS.Var_decl (Set.toList var_set) sort nullRange : acc
-- | removes a quantification from a formula
noQuantification :: CAS.CASLFORMULA -> (CAS.CASLFORMULA, [CAS.VAR_DECL])
noQuantification (CAS.Quantification _ vars form _) = (form, vars)
noQuantification form = (form, [])
-- | translate the CASL sorts to symbols
kinds2syms :: Set.Set Id -> Set.Set CSign.Symbol
kinds2syms = Set.map kind2sym
-- | translate a CASL sort to a CASL symbol
kind2sym :: Id -> CSign.Symbol
kind2sym k = CSign.Symbol k CSign.SortAsItemType
-- | translates the CASL predicates into CASL symbols
preds2syms :: Map.Map Id (Set.Set CSign.PredType) -> Set.Set CSign.Symbol
preds2syms = Map.foldWithKey pred2sym Set.empty
-- | translates a CASL predicate into a CASL symbol
pred2sym :: Id -> Set.Set CSign.PredType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol
pred2sym pn spt acc = Set.union set acc
where set = Set.fold (createSym4id pn) Set.empty spt
-- | creates a CASL symbol for a predicate
createSym4id :: Id -> CSign.PredType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol
createSym4id pn pt acc = Set.insert sym acc
where sym = CSign.Symbol pn $ CSign.PredAsItemType pt
-- | translates the CASL operators into CASL symbols
ops2symbols :: CSign.OpMap -> Set.Set CSign.Symbol
ops2symbols = Map.foldWithKey op2sym Set.empty
-- | translates a CASL operator into a CASL symbol
op2sym :: Id -> Set.Set CSign.OpType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol
op2sym on sot acc = Set.union set acc
where set = Set.fold (createSymOp4id on) Set.empty sot
-- | creates a CASL symbol for an operator
createSymOp4id :: Id -> CSign.OpType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol
createSymOp4id on ot acc = Set.insert sym acc
where sym = CSign.Symbol on $ CSign.OpAsItemType ot
-- | extract the variables from a CASL formula and put them in a map
-- with keys the sort of the variables and value the set of variables
-- in this sort
getVars :: CAS.CASLFORMULA -> Map.Map Id (Set.Set Token)
getVars (CAS.Quantification _ _ f _) = getVars f
getVars (CAS.Conjunction fs _) = foldr (Map.unionWith (Set.union) . getVars) Map.empty fs
getVars (CAS.Disjunction fs _) = foldr (Map.unionWith (Set.union) . getVars) Map.empty fs
getVars (CAS.Implication f1 f2 _ _) = Map.unionWith (Set.union) v1 v2
where v1 = getVars f1
v2 = getVars f2
getVars (CAS.Equivalence f1 f2 _) = Map.unionWith (Set.union) v1 v2
where v1 = getVars f1
v2 = getVars f2
getVars (CAS.Negation f _) = getVars f
getVars (CAS.Predication _ ts _) = foldr (Map.unionWith (Set.union) . getVarsTerm) Map.empty ts
getVars (CAS.Definedness t _) = getVarsTerm t
getVars (CAS.Existl_equation t1 t2 _) = Map.unionWith (Set.union) v1 v2
where v1 = getVarsTerm t1
v2 = getVarsTerm t2
getVars (CAS.Strong_equation t1 t2 _) = Map.unionWith (Set.union) v1 v2
where v1 = getVarsTerm t1
v2 = getVarsTerm t2
getVars (CAS.Membership t _ _) = getVarsTerm t
getVars (CAS.Mixfix_formula t) = getVarsTerm t
getVars _ = Map.empty
-- | extract the variables of a CASL term
getVarsTerm :: CAS.CASLTERM -> Map.Map Id (Set.Set Token)
getVarsTerm (CAS.Qual_var var sort _) = Map.insert sort (Set.singleton var) Map.empty
getVarsTerm (CAS.Application _ ts _) = foldr (Map.unionWith (Set.union) . getVarsTerm) Map.empty ts
getVarsTerm (CAS.Sorted_term t _ _) = getVarsTerm t
getVarsTerm (CAS.Cast t _ _) = getVarsTerm t
getVarsTerm (CAS.Conditional t1 f t2 _) = Map.unionWith (Set.union) v3 m
where v1 = getVarsTerm t1
v2 = getVarsTerm t2
v3 = getVars f
m = Map.unionWith (Set.union) v1 v2
getVarsTerm (CAS.Mixfix_term ts) = foldr (Map.unionWith (Set.union) . getVarsTerm) Map.empty ts
getVarsTerm (CAS.Mixfix_parenthesized ts _) =
foldr (Map.unionWith (Set.union) . getVarsTerm) Map.empty ts
getVarsTerm (CAS.Mixfix_bracketed ts _) =
foldr (Map.unionWith (Set.union) . getVarsTerm) Map.empty ts
getVarsTerm (CAS.Mixfix_braced ts _) =
foldr (Map.unionWith (Set.union) . getVarsTerm) Map.empty ts
getVarsTerm _ = Map.empty
-- | generates the constructor constraint
ctorSen :: Bool -> GenAx -> Named CAS.CASLFORMULA
ctorSen isFree (sorts, _, ops) = do
let sortList = Set.toList sorts
opSyms = map ( \ c -> let ide = compId c in CAS.Qual_op_name ide
(CSign.toOP_TYPE $ compType c) $ posOfId ide) $ Set.toList ops
allSyms = opSyms
resType _ (CAS.Op_name _) = False
resType s (CAS.Qual_op_name _ t _) = CAS.res_OP_TYPE t == s
getIndex s = maybe (-1) id $ List.findIndex (== s) sortList
addIndices (CAS.Op_name _) =
error "CASL/StaticAna: Internal error in function addIndices"
addIndices os@(CAS.Qual_op_name _ t _) =
(os,map getIndex $ CAS.args_OP_TYPE t)
collectOps s =
CAS.Constraint s (map addIndices $ filter (resType s) allSyms) s
constrs = map collectOps sortList
f = CAS.Sort_gen_ax constrs isFree
makeNamed ("ga_generated_" ++ showSepList (showString "_") showId sortList "") f
maudeSymbol2validCASLSymbol :: Token -> [Token]
maudeSymbol2validCASLSymbol t = splitDoubleUnderscores str ""
where str = ms2vcs $ show t
ms2vcs :: String -> String
ms2vcs s = case Map.member s stringMap of
True -> Map.findWithDefault "" s stringMap
False -> let f = \ x y -> if Map.member x charMap
then (charMap Map.! x) ++ ['\''] ++ y
else if x == '_'
then "__" ++ y
else x : y
in foldr f [] s
-- | map of reserved words
stringMap :: Map.Map String String
stringMap = Map.fromList
[("true", "maudeTrue"),
("false", "maudeFalse"),
("not_", "neg__"),
("s_", "suc"),
("_+_", "__+__"),
("_*_", "__*__"),
("_<_", "__<__"),
("_<=_", "__<=__"),
("_>_", "__>__"),
("_>=_", "__>=__")]
-- ops __^__,
-- min, max, __-!__: Nat * Nat -> Nat;
-- __ -?__, __/?__,
-- __ div __, __mod__: Nat * Nat ->? Nat;
-- | splits the string into a list of tokens, separating the double
-- underscores from the rest of characters
splitDoubleUnderscores :: String -> String -> [Token]
splitDoubleUnderscores [] acc = if null acc
then []
else [mkSimpleId acc]
splitDoubleUnderscores ('_' : '_' : cs) acc = if null acc
then dut : rest
else acct : dut : rest
where acct = mkSimpleId acc
dut = mkSimpleId "__"
rest = splitDoubleUnderscores cs []
splitDoubleUnderscores (c : cs) acc = splitDoubleUnderscores cs (acc ++ [c])
-- | error Id
errorId :: String -> Id
errorId s = token2id $ mkSimpleId $ "ERROR: " ++ s