HasOps.hs revision c71a28752b8269572ba1de2e2230bb97a4dde6ea
module Maude.Meta.HasOps (
HasOps(..)
) where
import Maude.Meta.Qid
import Maude.Meta.Term
import Maude.Meta.Module
import Data.Set (Set)
import qualified Data.Set as Set
class HasOps a where
getOps :: a -> QidSet
mapOps :: QidMap -> a -> a
instance HasOps Term where
getOps term = case term of
Term op ts -> Set.insert op (getOps ts)
_ -> Set.empty
mapOps mp term = case term of
Term op ts -> Term (mapAsFunction mp op) (mapOps mp ts)
_ -> term
instance (HasOps a) => HasOps [a] where
getOps = Set.unions . map getOps
mapOps = map . mapOps
instance (HasOps a, HasOps b) => HasOps (a, b) where
getOps (a, b) = Set.union (getOps a) (getOps b)
mapOps mp (a, b) = (mapOps mp a, mapOps mp b)
instance (HasOps a, HasOps b, HasOps c) => HasOps (a, b, c) where
getOps (a, b, c) = Set.union (getOps a) (getOps (b, c))
mapOps mp (a, b, c) = (mapOps mp a, mapOps mp b, mapOps mp c)
instance (Ord a, HasOps a) => HasOps (Set a) where
mapOps = Set.map . mapOps
instance HasOps OpDecl where
getOps = Set.singleton . op'name
mapOps mp op = op {
op'name = mapAsFunction mp (op'name op)
}
instance HasOps Condition where
getOps cond = case cond of
Nil -> Set.empty
Equal t1 t2 -> getOps (t1, t2)
Member t _ -> getOps t
Match t1 t2 -> getOps (t1, t2)
Implies t1 t2 -> getOps (t1, t2)
Conjunction c1 c2 -> getOps (c1, c2)
mapOps mp cond = case cond of
Nil -> Nil
Equal t1 t2 -> Equal (mapOps mp t1) (mapOps mp t2)
Member t s -> Member (mapOps mp t) s
Match t1 t2 -> Match (mapOps mp t1) (mapOps mp t2)
Implies t1 t2 -> Implies (mapOps mp t1) (mapOps mp t2)
Conjunction c1 c2 -> Conjunction (mapOps mp c1) (mapOps mp c2)
instance HasOps MembAx where
getOps mb = case mb of
Mb t _ _ -> getOps t
Cmb t _ c _ -> getOps (t, c)
mapOps mp mb = case mb of
Mb t s as -> Mb (mapOps mp t) s as
Cmb t s c as -> Cmb (mapOps mp t) s (mapOps mp c) as
instance HasOps Equation where
getOps eq = case eq of
Eq t1 t2 _ -> getOps (t1, t2)
Ceq t1 t2 c _ -> getOps (t1, t2, c)
mapOps mp eq = case eq of
Eq t1 t2 as -> Eq (mapOps mp t1) (mapOps mp t2) as
Ceq t1 t2 c as -> Ceq (mapOps mp t1) (mapOps mp t2) (mapOps mp c) as
instance HasOps Rule where
getOps rl = case rl of
Rl t1 t2 _ -> getOps (t1, t2)
Crl t1 t2 c _ -> getOps (t1, t2, c)
mapOps mp rl = case rl of
Rl t1 t2 as -> Rl (mapOps mp t1) (mapOps mp t2) as
Crl t1 t2 c as -> Crl (mapOps mp t1) (mapOps mp t2) (mapOps mp c) as