Prover.hs revision 9159452d41e00128e4d0a6c252d8c84ecd95b988
{- |
Module : $Header$
Description : General datastructures for theorem prover interfaces
Copyright : (c) Till Mossakowski, Klaus Luettich, Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (deriving Typeable)
General datastructures for theorem prover interfaces
-}
module Logic.Prover where
import qualified Common.OrderedMap as OMap
import qualified Data.Map as Map
import qualified Data.Set as Set
import Common.AS_Annotation as AS_Anno
import Common.ProofUtils
import Data.Typeable
import Common.Result
import Common.Doc
import Common.DocUtils
import Data.List
import Data.Maybe (isJust)
import Data.Time (TimeOfDay,midnight)
import qualified Control.Concurrent as Concurrent
-- * pack sentences with their proofs
{- | instead of the sentence name (that will be the key into the order map)
the theorem status will be stored as attribute. The theorem status will be a
(wrapped) list of pairs (AnyComorphism, BasicProof) in G_theory, but a wrapped
list of (Proof_status proof_tree) in a logic specific 'Theory'. -}
type SenStatus a tStatus = SenAttr a (ThmStatus tStatus)
thmStatus :: SenStatus a tStatus -> [tStatus]
thmStatus = getThmStatus . senAttr
-- | the wrapped list of proof scripts or (AnyComorphism, BasicProof) pairs
data ThmStatus a = ThmStatus { getThmStatus :: [a] } deriving Show
instance Eq (ThmStatus a) where
_ == _ = True
-- Ord must be consistent with Eq
instance Ord (ThmStatus a) where
compare _ _ = EQ
instance (Show b, Pretty a) => Pretty (SenStatus a b) where
pretty = printSenStatus pretty
printSenStatus :: (a -> Doc) -> SenStatus a b -> Doc
printSenStatus fA = fA . sentence
emptySenStatus :: SenStatus a b
emptySenStatus = makeNamed (ThmStatus []) $ error "emptySenStatus"
instance Pretty a => Pretty (OMap.ElemWOrd a) where
pretty = printOMapElemWOrd pretty
printOMapElemWOrd :: (a -> Doc) -> OMap.ElemWOrd a -> Doc
printOMapElemWOrd fA = fA . OMap.ele
-- | the map from lables to the theorem plus status (and position)
type ThSens a b = OMap.OMap String (SenStatus a b)
noSens :: ThSens a b
noSens = OMap.empty
mapThSensValue :: (a -> b) -> ThSens a c -> ThSens b c
mapThSensValue f = OMap.map (mapValue f)
mapThSensStatus :: (b -> c) -> ThSens a b -> ThSens a c
mapThSensStatus f = OMap.map (mapStatus f)
-- | join and disambiguate
--
-- * separate Axioms from Theorems
--
-- * don't merge sentences with same key but different contents?
joinSens :: (Ord a,Eq b) => ThSens a b -> ThSens a b -> ThSens a b
joinSens s1 s2 = let
l1 = sortBy cmpSnd $ Map.toList s1
updN n (_, e) = (n, e)
m = OMap.size s1
l2 = map (\ (x,e) -> (x,e {OMap.order = m + OMap.order e })) $
sortBy cmpSnd $ Map.toList s2
in Map.fromList $ mergeSens l1 $
genericDisambigSens fst updN (OMap.keysSet s1) l2
where mergeSens [] l2 = l2
mergeSens l1 [] = l1
mergeSens l1@((k1, e1) : r1) l2@((k2, e2) : r2) =
case cmpSenEle e1 e2 of
LT -> (k1, e1) : mergeSens r1 l2
EQ -> (k1, e1 { OMap.ele = (OMap.ele e1)
{ senAttr = ThmStatus $
union (thmStatus $ OMap.ele e1)
(thmStatus $ OMap.ele e2)}})
: mergeSens r1 r2
GT -> (k2, e2) : mergeSens l1 r2
cmpSnd :: (Ord a1) => (String, OMap.ElemWOrd (SenStatus a1 b))
-> (String, OMap.ElemWOrd (SenStatus a1 b)) -> Ordering
cmpSnd (_, a) (_, b) = cmpSenEle a b
cmpSenEle :: (Ord a1) => OMap.ElemWOrd (SenStatus a1 b)
-> OMap.ElemWOrd (SenStatus a1 b) -> Ordering
cmpSenEle x y = case (OMap.ele x,OMap.ele y) of
(d1, d2) -> compare
(sentence d1, isAxiom d1, isDef d1) (sentence d2, isAxiom d2, isDef d2)
diffSens :: (Ord a,Eq b) => ThSens a b -> ThSens a b -> ThSens a b
diffSens s1 s2 = let
l1 = sortBy cmpSnd $ Map.toList s1
l2 = sortBy cmpSnd $ Map.toList s2
in Map.fromList $ diffS l1 l2
where diffS [] _ = []
diffS l1 [] = l1
diffS l1@((k1, e1) : r1) l2@((_, e2) : r2) =
case cmpSenEle e1 e2 of
LT -> (k1, e1) : diffS r1 l2
EQ -> diffS r1 r2
GT -> diffS l1 r2
mapValue :: (a -> b) -> SenStatus a c -> SenStatus b c
mapValue f d = d { sentence = f $ sentence d }
mapStatus :: (b -> c) -> SenStatus a b -> SenStatus a c
mapStatus f d = d { senAttr = ThmStatus $ map f $ thmStatus d }
-- | sets the field isAxiom according to the boolean value;
-- if isAxiom is False for a sentence and set to True,
-- the field wasTheorem is set to True
markAsAxiom :: Ord a => Bool -> ThSens a b -> ThSens a b
markAsAxiom b = OMap.map $ \ d -> d
{ isAxiom = b
, wasTheorem = b && (not (isAxiom d) || wasTheorem d) }
markAsGoal :: Ord a => ThSens a b -> ThSens a b
markAsGoal = markAsAxiom False
toNamedList :: ThSens a b -> [AS_Anno.Named a]
toNamedList = map (uncurry toNamed) . OMap.toList
toNamed :: String -> SenStatus a b -> AS_Anno.Named a
toNamed k s = s { AS_Anno.senAttr = k }
-- | putting Sentences from a list into a map
toThSens :: Ord a => [AS_Anno.Named a] -> ThSens a b
toThSens = OMap.fromList . map
( \ v -> (AS_Anno.senAttr v, v { senAttr = ThmStatus [] }))
. disambiguateSens Set.empty . nameSens
-- | theories with a signature and sentences with proof states
data Theory sign sen proof_tree =
Theory sign (ThSens sen (Proof_status proof_tree))
mapTheoryStatus :: (a->b) -> Theory sign sentence a
-> Theory sign sentence b
mapTheoryStatus f (Theory sig thSens) =
Theory sig (mapThSensStatus (mapProofStatus f) thSens)
-- | theory morphisms between two theories
data TheoryMorphism sign sen mor proof_tree = TheoryMorphism
{ t_source :: Theory sign sen proof_tree
, t_target :: Theory sign sen proof_tree
, t_morphism :: mor }
-- e.g. the file name, or the script itself, or a configuration string
data Tactic_script = Tactic_script String deriving (Eq, Ord, Show)
-- | enumeration type representing the status of a goal
data GoalStatus = Open | Disproved
| Proved (Maybe Bool) -- ^ Just True means consistent; Nothing don't know
deriving (Eq, Ord)
-- needed for automated theorem provers like SPASS;
-- provers like Isabelle set it to Nothing
instance Show GoalStatus where
show gs = case gs of
Open -> "Open"
Disproved -> "Disproved"
Proved mc -> "Proved" ++ maybe ""
( \ c -> "(" ++ (if c then "" else "in") ++ "consistent)") mc
-- | data type representing the proof status for a goal or
data Proof_status proof_tree = Proof_status
{ goalName :: String
, goalStatus :: GoalStatus
, usedAxioms :: [String] -- ^ used axioms
, proverName :: String -- ^ name of prover
, proofTree :: proof_tree
, usedTime :: TimeOfDay
, tacticScript :: Tactic_script }
| Consistent Tactic_script
deriving (Show, Eq, Ord)
{- | constructs an open proof status with basic information filled in;
make sure to set proofTree to a useful value before you access it. -}
openProof_status :: Ord pt => String -- ^ name of the goal
-> String -- ^ name of the prover
-> pt -> Proof_status pt
openProof_status goalname provername proof_tree = Proof_status
{ goalName = goalname
, goalStatus = Open
, usedAxioms = []
, proverName = provername
, proofTree = proof_tree
, usedTime = midnight
, tacticScript = Tactic_script "" }
mapProofStatus :: (a->b) -> Proof_status a -> Proof_status b
mapProofStatus f st = st {proofTree = f $ proofTree st}
isProvedStat :: Proof_status proof_tree -> Bool
isProvedStat pst = case pst of
Consistent _ -> False
_ -> isProvedGStat . goalStatus $ pst
isProvedGStat :: GoalStatus -> Bool
isProvedGStat gs = case gs of
Proved _ -> True
_ -> False
goalUsedInProof :: Monad m => Proof_status proof_tree -> m Bool
goalUsedInProof pst = case goalStatus pst of
Proved m -> maybe (fail "don't know if goal was used") return m
_ -> fail "not a proof"
-- | different kinds of prover interfaces
data ProverKind = ProveGUI | ProveCMDLautomatic | ProveCMDLinteractive
-- | determine if a prover kind is implemented
hasProverKind :: ProverKind -> ProverTemplate x y z -> Bool
hasProverKind pk pt = case pk of
ProveGUI -> isJust $ proveGUI pt
ProveCMDLautomatic ->
isJust (proveCMDLautomatic pt) && isJust (proveCMDLautomaticBatch pt)
ProveCMDLinteractive -> isJust $ proveCMDLinteractive pt
-- | prover or consistency checker
data ProverTemplate theory sublogics proof_tree = Prover
{ prover_name :: String,
prover_sublogic :: sublogics,
proveGUI :: Maybe ([String] -> String -> theory
-> IO ([Proof_status proof_tree])),
-- input: imported theories, theory name, theory (incl. goals)
-- output: proof status for goals and lemmas
proveCMDLautomatic :: Maybe (String -> Tactic_script
-> theory -> IO (Result ([Proof_status proof_tree]))),
-- blocks until a result is determined
-- input: theory name, Tactic_script,
-- theory (incl. goals, but only the first one is tried)
-- output: proof status for goals and lemmas
proveCMDLinteractive :: Maybe (String -> Tactic_script
-> theory -> IO (Result ([Proof_status proof_tree]))),
-- input, output: see above
proveCMDLautomaticBatch ::
Maybe (Bool -- 1.
-> Bool -- 2.
-> Concurrent.MVar (Result [Proof_status proof_tree]) -- 3.
-> String -- 4.
-> Tactic_script -- 5.
-> theory -- 6.
-> IO (Concurrent.ThreadId,Concurrent.MVar ())) -- output
-- input: 1. True means include proven theorems in subsequent
-- proof attempts;
-- 2. True means save problem file for each goal;
-- 3. MVar reference to a Result [] or empty MVar,
-- used to store the result of each attempt in the batch run;
-- 4. theory name;
-- 5. default Tactic_script;
-- 6. theory (incl. goals and
-- Open SenStatus for individual tactic_scripts)
-- output: fst --> identifier of the batch thread for killing it,
-- after each proof attempt the result is stored in the
-- IOref
-- snd --> MVar to wait for the end of the thread
} deriving Typeable
type Prover sign sentence sublogics proof_tree =
ProverTemplate (Theory sign sentence proof_tree) sublogics proof_tree
mkProverTemplate :: String -> sublogics
-> (String -> theory -> IO ([Proof_status proof_tree]))
-> ProverTemplate theory sublogics proof_tree
mkProverTemplate str sl fct = Prover
{ prover_name = str
, prover_sublogic = sl
, proveGUI = Just $ \ _ -> fct
, proveCMDLautomatic = Nothing
, proveCMDLinteractive = Nothing
, proveCMDLautomaticBatch = Nothing }
type ConsChecker sign sentence sublogics morphism proof_tree =
ProverTemplate (TheoryMorphism sign sentence morphism proof_tree)
sublogics proof_tree