Prover.hs revision 87ab788adadc73fd49e3c762caee6a88f844a5bc
{- |
Module : $Header$
Copyright : (c) Till Mossakowski, Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : portable
Provide prover stuff for class Logic.Sentences
-}
module Logic.Prover where
import qualified Common.AS_Annotation as AS_Anno
import Common.PrettyPrint
import Common.Utils
import Common.ProofUtils
import qualified Common.OrderedMap as OMap
import qualified Common.Lib.Map as Map (toList,fromList)
import qualified Common.Lib.Set as Set
import Data.Dynamic
import Data.List
-- * sentence packing
data SenStatus a tStatus = SenStatus
{ value :: a
, isAxiom :: Bool
, isDef :: Bool
, thmStatus :: [tStatus]
} deriving Show
instance PrettyPrint a => PrettyPrint (SenStatus a b) where
printText0 ga x = printText0 ga (value x)
emptySenStatus :: SenStatus a b
emptySenStatus = SenStatus { value = error "emptySenStatus"
, isDef = False
, isAxiom = True
, thmStatus = [] }
instance Eq a => Eq (SenStatus a b) where
d1 == d2 = (value d1, isAxiom d1, isDef d1) ==
(value d2, isAxiom d2, isDef d2)
instance Ord a => Ord (SenStatus a b) where
d1 <= d2 = (value d1, isAxiom d1, isDef d1) <=
(value d2, isAxiom d2, isDef d2)
decoTc :: TyCon
decoTc = mkTyCon "Static.DevGraph.SenStatus"
instance (Typeable s,Typeable b) => Typeable (SenStatus s b) where
typeOf s = mkTyConApp decoTc [typeOf ((undefined :: SenStatus a b -> a) s),
typeOf ((undefined :: SenStatus a b -> b) s)]
elemWOrdTc :: TyCon
elemWOrdTc = mkTyCon "Common.OrderedMap.ElemWOrd"
instance (Typeable a) => Typeable (OMap.ElemWOrd a) where
typeOf s = mkTyConApp elemWOrdTc
[typeOf ((undefined :: OMap.ElemWOrd a -> a) s)]
instance PrettyPrint a => PrettyPrint (OMap.ElemWOrd a) where
printText0 ga e = printText0 ga (OMap.ele e)
type ThSens a b = OMap.OMap String (SenStatus a b)
noSens :: ThSens a b
noSens = OMap.empty
-- | join and disambiguate
--
-- * separate Axioms from Theorems
--
-- * don't merge sentences with same key but different contents?
joinSens :: (Ord a,Eq b) => ThSens a b -> ThSens a b -> ThSens a b
joinSens s1 s2 = let l1 = sortBy (comparing snd) $ Map.toList s1
updN n (_, e) = (n, e)
m = OMap.size s1
l2 = map (\ (x,e) ->
(x,e {OMap.order = m + OMap.order e })) $
sortBy (comparing snd) $ Map.toList s2
in Map.fromList $ mergeSens l1 $
genericDisambigSens fst updN (OMap.keysSet s1) l2
where mergeSens [] l2 = l2
mergeSens l1 [] = l1
mergeSens l1@((k1, e1) : r1) l2@((k2, e2) : r2) =
case compare e1 e2 of
LT -> (k1, e1) : mergeSens r1 l2
{ thmStatus =
union (thmStatus $ OMap.ele e1)
(thmStatus $ OMap.ele e2)}})
: mergeSens r1 r2
GT -> (k2, e2) : mergeSens l1 r2
diffSens :: (Ord a,Eq b) => ThSens a b -> ThSens a b -> ThSens a b
diffSens s1 s2 = let
l1 = sortBy (comparing snd) $ Map.toList s1
l2 = sortBy (comparing snd) $ Map.toList s2
in Map.fromList $ diffS l1 l2
where diffS [] _ = []
diffS l1 [] = l1
diffS l1@((k1, e1) : r1) l2@((_, e2) : r2) =
case compare e1 e2 of
LT -> (k1, e1) : diffS r1 l2
EQ -> diffS r1 r2
GT -> diffS l1 r2
mapValue :: (a -> b) -> SenStatus a c -> SenStatus b c
mapValue f d = d { value = f $ value d }
markAsGoal :: Ord a => ThSens a b -> ThSens a b
markAsGoal = OMap.map (\d -> d { isAxiom = False})
toNamedList :: ThSens a b -> [AS_Anno.Named a]
toNamedList = map (uncurry toNamed) . OMap.toList
toNamed :: String -> SenStatus a b -> AS_Anno.Named a
toNamed k s = AS_Anno.NamedSen
{ AS_Anno.sentence = value s
, AS_Anno.senName = k
, AS_Anno.isDef = isDef s
, AS_Anno.isAxiom = isAxiom s}
-- | putting Sentences from a list into a map
toThSens :: Ord a => [AS_Anno.Named a] -> ThSens a b
toThSens = OMap.fromList . map
( \ v -> (AS_Anno.senName v,
emptySenStatus { value = AS_Anno.sentence v
, isAxiom = AS_Anno.isAxiom v
, isDef = AS_Anno.isDef v }))
. disambiguateSens Set.empty . nameSens
-- | theories with a signature and sentences with proof states
data Theory sign sen proof_tree =
Theory sign (ThSens sen (Proof_status proof_tree))
-- | theory morphisms between two theories
data TheoryMorphism sign sen mor proof_tree =
TheoryMorphism {t_source :: Theory sign sen proof_tree,
t_target :: Theory sign sen proof_tree,
t_morphism :: mor
}
-- e.g. the file name, or the script itself, or a configuration string
data Tactic_script = Tactic_script String deriving (Eq, Ord, Show)
data Proof_status proof_tree =
Open { goalName :: String }
| Disproved { goalName :: String }
| Proved { goalName :: String,
usedAxioms :: [String],
-- used axioms or theorems or goals
proverName :: String, -- name of prover
proofTree :: proof_tree,
tacticScript :: Tactic_script }
| Consistent Tactic_script
deriving (Eq, Show)
instance Eq a => Ord (Proof_status a) where
Open _ <= _ = True
Disproved _ <= x = case x of
Open _ -> False
_ -> True
Proved _ _ _ _ _ <= x = case x of
Proved _ _ _ _ _ -> True
_ -> False
_ <= _ = False
isProvedStat :: Proof_status proof_tree -> Bool
isProvedStat (Proved _ _ _ _ _) = True
isProvedStat _ = False
-- | prover or consistency checker
data ProverTemplate goal proof_tree = Prover
{ prover_name :: String,
prover_sublogic :: String,
prove :: String -> goal -> IO([Proof_status proof_tree])
-- input: theory name, theory, goals
-- output: proof status for goals and lemmas
}
type Prover sign sentence proof_tree =
ProverTemplate (Theory sign sentence proof_tree) proof_tree
type ConsChecker sign sentence morphism proof_tree =
ProverTemplate (TheoryMorphism sign sentence morphism proof_tree) proof_tree
theoryTc :: TyCon
theoryTc = mkTyCon "Logic.Prover.Theory"
instance (Typeable a, Typeable b,Typeable c)
=> Typeable (Theory a b c) where
typeOf t = mkTyConApp theoryTc
[typeOf ((undefined :: Theory a b c -> a) t),
typeOf ((undefined :: Theory a b c -> b) t),
typeOf ((undefined :: Theory a b c -> c) t)]
theoryMorTc :: TyCon
theoryMorTc = mkTyCon "Logic.Prover.TheoryMorphism"
instance (Typeable a, Typeable b, Typeable c, Typeable d)
=> Typeable (TheoryMorphism a b c d) where
typeOf t = mkTyConApp theoryMorTc
[typeOf ((undefined :: TheoryMorphism a b c d -> a) t),
typeOf ((undefined :: TheoryMorphism a b c d -> b) t),
typeOf ((undefined :: TheoryMorphism a b c d -> c) t),
typeOf ((undefined :: TheoryMorphism a b c d -> d) t)]
proverTc :: TyCon
proverTc = mkTyCon "Logic.Prover.ProverTemplate"
instance (Typeable a, Typeable b) => Typeable (ProverTemplate a b) where
typeOf p = mkTyConApp proverTc
[typeOf ((undefined :: ProverTemplate a b -> a) p),
typeOf ((undefined :: ProverTemplate a b -> b) p)]
tcProof_status :: TyCon
tcProof_status = mkTyCon "Logic.Prover.Proof_status"
instance Typeable proof_tree => Typeable (Proof_status proof_tree) where
typeOf b = mkTyConApp tcProof_status
[typeOf $ (undefined :: Proof_status proof_tree -> proof_tree) b]