Prover.hs revision 1d5b2a1b3cba9e243b56abed8acdc5b9254b1a31
{- |
Module : $Header$
Description : General datastructures for theorem prover interfaces
Copyright : (c) Till Mossakowski, Klaus L�ttich, Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : portable
General datastructures for theorem prover interfaces
-}
module Logic.Prover where
import qualified Common.OrderedMap as OMap
import qualified Data.Map as Map
import qualified Data.Set as Set
import Common.AS_Annotation as AS_Anno
import Common.ProofUtils
import Data.Typeable
import Common.Result
import Common.Doc
import Common.DocUtils
import Data.List
import Data.Maybe (isJust)
import qualified Control.Concurrent as Concurrent
-- * sentence packing
type SenStatus a tStatus = SenAttr a (ThmStatus tStatus)
thmStatus :: SenStatus a tStatus -> [tStatus]
thmStatus = getThmStatus . senAttr
value :: SenStatus a tStatus -> a
value = sentence
data ThmStatus a = ThmStatus { getThmStatus :: [a] } deriving Show
instance Eq (ThmStatus a) where
_ == _ = True
-- Ord must be consistent with Eq
instance Ord (ThmStatus a) where
compare _ _ = EQ
instance (Show b, Pretty a) => Pretty (SenStatus a b) where
pretty = printSenStatus pretty
printSenStatus :: (a -> Doc) -> SenStatus a b -> Doc
printSenStatus fA = fA . value
emptySenStatus :: SenStatus a b
emptySenStatus = SenAttr
{ sentence = error "emptySenStatus"
, isDef = False
, isAxiom = True
, wasTheorem = False
, senAttr = ThmStatus [] }
instance Pretty a => Pretty (OMap.ElemWOrd a) where
pretty = printOMapElemWOrd pretty
printOMapElemWOrd :: (a -> Doc) -> OMap.ElemWOrd a -> Doc
printOMapElemWOrd fA = fA . OMap.ele
type ThSens a b = OMap.OMap String (SenStatus a b)
noSens :: ThSens a b
noSens = OMap.empty
mapThSensStatus :: (b -> c) -> ThSens a b -> ThSens a c
mapThSensStatus f = OMap.map (mapStatus f)
compareSnd :: Ord b => (a, b) -> (a, b) -> Ordering
compareSnd (_, a) (_, b) = compare a b
-- | join and disambiguate
--
-- * separate Axioms from Theorems
--
-- * don't merge sentences with same key but different contents?
joinSens :: (Ord a,Eq b) => ThSens a b -> ThSens a b -> ThSens a b
joinSens s1 s2 = let l1 = sortBy compareSnd $ Map.toList s1
updN n (_, e) = (n, e)
m = OMap.size s1
l2 = map (\ (x,e) ->
(x,e {OMap.order = m + OMap.order e })) $
sortBy compareSnd $ Map.toList s2
in Map.fromList $ mergeSens l1 $
genericDisambigSens fst updN (OMap.keysSet s1) l2
where mergeSens [] l2 = l2
mergeSens l1 [] = l1
mergeSens l1@((k1, e1) : r1) l2@((k2, e2) : r2) =
case compare e1 e2 of
LT -> (k1, e1) : mergeSens r1 l2
{ senAttr = ThmStatus $
union (thmStatus $ OMap.ele e1)
(thmStatus $ OMap.ele e2)}})
: mergeSens r1 r2
GT -> (k2, e2) : mergeSens l1 r2
diffSens :: (Ord a,Eq b) => ThSens a b -> ThSens a b -> ThSens a b
diffSens s1 s2 = let
l1 = sortBy compareSnd $ Map.toList s1
l2 = sortBy compareSnd $ Map.toList s2
in Map.fromList $ diffS l1 l2
where diffS [] _ = []
diffS l1 [] = l1
diffS l1@((k1, e1) : r1) l2@((_, e2) : r2) =
case compare e1 e2 of
LT -> (k1, e1) : diffS r1 l2
EQ -> diffS r1 r2
GT -> diffS l1 r2
mapValue :: (a -> b) -> SenStatus a c -> SenStatus b c
mapValue f d = d { sentence = f $ value d }
mapStatus :: (b -> c) -> SenStatus a b -> SenStatus a c
mapStatus f d = d { senAttr = ThmStatus $ map f $ thmStatus d }
markAsAxiom :: Ord a => Bool -> ThSens a b -> ThSens a b
markAsAxiom b = OMap.map (\d -> d { isAxiom = b})
-- only mark if it was no axiom at all
markAsFormerTheorem :: Ord a => Bool -> ThSens a b -> ThSens a b
markAsFormerTheorem b = OMap.map (\d -> d { wasTheorem =
b && (not $ isAxiom d) })
markAsGoal :: Ord a => ThSens a b -> ThSens a b
markAsGoal = markAsFormerTheorem False . markAsAxiom False
toNamedList :: ThSens a b -> [AS_Anno.Named a]
toNamedList = map (uncurry toNamed) . OMap.toList
toNamed :: String -> SenStatus a b -> AS_Anno.Named a
toNamed k s = s { AS_Anno.senAttr = k }
-- | putting Sentences from a list into a map
toThSens :: Ord a => [AS_Anno.Named a] -> ThSens a b
toThSens = OMap.fromList . map
( \ v -> (AS_Anno.senName v, v { senAttr = ThmStatus [] }))
. disambiguateSens Set.empty . nameSens
-- | theories with a signature and sentences with proof states
data Theory sign sen proof_tree =
Theory sign (ThSens sen (Proof_status proof_tree))
mapTheoryStatus :: (a->b) -> Theory sign sentence a
-> Theory sign sentence b
mapTheoryStatus f (Theory sig thSens) =
Theory sig (mapThSensStatus (mapProofStatus f) thSens)
-- | theory morphisms between two theories
data TheoryMorphism sign sen mor proof_tree = TheoryMorphism
{ t_source :: Theory sign sen proof_tree
, t_target :: Theory sign sen proof_tree
, t_morphism :: mor }
-- e.g. the file name, or the script itself, or a configuration string
data Tactic_script = Tactic_script String deriving (Eq, Ord, Show)
-- | enumeration type representing the status of a goal
data GoalStatus = Open
| Disproved
| Proved (Maybe Bool) -- ^ Just True means consistent;
-- Nothing means don't know
--
-- needed for automated theorem provers like SPASS;
-- provers like Isabelle set it to Nothing
deriving (Eq,Ord)
instance Show GoalStatus where
show gs = case gs of
Open -> "Open"
Disproved -> "Disproved"
Proved mc -> "Proved" ++
maybe "" (\ c -> "("++
(if c then "" else "in") ++
"consistent)") mc
-- | data type representing the proof status for a goal or
data Proof_status proof_tree =
Proof_status { goalName :: String
, goalStatus :: GoalStatus
, usedAxioms :: [String] -- ^ used axioms
, proverName :: String -- ^ name of prover
, proofTree :: proof_tree
, tacticScript :: Tactic_script }
| Consistent Tactic_script
deriving (Show,Eq,Ord)
-- | constructs an open proof status with basic information filled in;
-- make sure to set proofTree to a useful value before you access it, because
-- its default value is 'undefined'
openProof_status :: Ord pt =>
String -- ^ name of the goal
-> String -- ^ name of the prover
-> pt
-> Proof_status pt
openProof_status goalname provername proof_tree =
Proof_status { goalName = goalname
, goalStatus = Open
, usedAxioms = []
, proverName = provername
, proofTree = proof_tree
, tacticScript = Tactic_script ""}
mapProofStatus :: (a->b) -> Proof_status a -> Proof_status b
mapProofStatus f st = st {proofTree = f $ proofTree st}
{-
instance Eq a => Ord (Proof_status a) where
Open _ <= _ = True
Disproved _ <= x = case x of
Open _ -> False
_ -> True
Proved _ _ _ _ _ <= x = case x of
Proved _ _ _ _ _ -> True
_ -> False
_ <= _ = False
-- Ord instance must match Eq instance!
instance Eq a => Eq (Proof_status a) where
a == b = compare a b == EQ
-}
isProvedStat :: Proof_status proof_tree -> Bool
isProvedStat pst = case pst of
Consistent _ -> False
_ -> isProvedGStat . goalStatus $ pst
isProvedGStat :: GoalStatus -> Bool
isProvedGStat gs = case gs of
Proved _ -> True
_ -> False
goalUsedInProof :: Monad m => Proof_status proof_tree -> m Bool
goalUsedInProof pst =
case goalStatus pst of
Proved m -> maybe (fail "don't know if goal was used") return m
_ -> fail "not a proof"
-- | different kinds of prover interfaces
data ProverKind = ProveGUI | ProveCMDLautomatic | ProveCMDLinteractive
-- | determine if a prover kind is implemented
hasProverKind :: ProverKind -> ProverTemplate x y -> Bool
hasProverKind pk pt =
case pk of
ProveGUI -> isJust $ proveGUI pt
ProveCMDLautomatic -> isJust (proveCMDLautomatic pt) &&
isJust (proveCMDLautomaticBatch pt)
ProveCMDLinteractive -> isJust $ proveCMDLinteractive pt
-- | prover or consistency checker
data ProverTemplate theory proof_tree = Prover
{ prover_name :: String,
prover_sublogic :: String,
proveGUI :: Maybe (String -> theory -> IO ([Proof_status proof_tree])),
-- input: theory name, theory (incl. goals)
-- output: proof status for goals and lemmas
proveCMDLautomatic :: Maybe (String -> Tactic_script
-> theory -> IO (Result ([Proof_status proof_tree]))),
-- blocks until a result is determined
-- input: theory name, Tactic_script,
-- theory (incl. goals, but only the first one is tried)
-- output: proof status for goals and lemmas
proveCMDLinteractive :: Maybe (String -> Tactic_script
-> theory -> IO (Result ([Proof_status proof_tree]))),
-- input, output: see above
proveCMDLautomaticBatch ::
Maybe (Bool -> Bool
-> Concurrent.MVar (Result [Proof_status proof_tree])
-> String -> Tactic_script -> theory
-> IO (Concurrent.ThreadId,Concurrent.MVar ()))
-- input: 1. True means include proven theorems in subsequent
-- proof attempts;
-- 2. True means save problem file for each goal;
-- 2. reference to a Result with an empty list (return []),
-- used to store the result of the batch run;
-- 3. theory name;
-- 4. default Tactic_script,
-- 5. theory (incl. goals and
-- Open SenStatus for individual tactic_scripts)
-- output: fst --> identifier of the batch thread for killing it,
-- after each proof attempt the result is stored in the
-- IOref
-- snd --> MVar to wait for the end of the thread
}
type Prover sign sentence proof_tree =
ProverTemplate (Theory sign sentence proof_tree) proof_tree
emptyProverTemplate :: ProverTemplate x y
emptyProverTemplate = Prover
{ prover_name = error "Empty proverTemplate name"
, prover_sublogic = error "Empty proverTemplate sublogic"
, proveGUI = Nothing
, proveCMDLautomatic = Nothing
, proveCMDLinteractive = Nothing
, proveCMDLautomaticBatch = Nothing }
type ConsChecker sign sentence morphism proof_tree =
ProverTemplate (TheoryMorphism sign sentence morphism proof_tree) proof_tree
proverTc :: TyCon
proverTc = mkTyCon "Logic.Prover.ProverTemplate"
instance (Typeable a, Typeable b) => Typeable (ProverTemplate a b) where
typeOf p = mkTyConApp proverTc
[typeOf ((error "Logic.Prover" :: ProverTemplate a b -> a) p),
typeOf ((error "Logic.Prover" :: ProverTemplate a b -> b) p)]