Logic.hs revision d058429727dd696a0327cdc28cadd268c34c36ba
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu{-# OPTIONS -fallow-undecidable-instances #-}
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu{- |
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuModule : $Header$
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuDescription : central interface (type class) for logics in Hets
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuCopyright : (c) Till Mossakowski, and Uni Bremen 2002-2006
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuLicense : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuMaintainer : till@informatik.uni-bremen.de
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuStability : provisional
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuPortability : non-portable (various -fglasgow-exts extensions)
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuCentral interface (type class) for logics in Hets
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert SavuProvides data structures for logics (with symbols). Logics are
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu a type class with an /identity type/ (usually interpreted
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu by a singleton set) which serves to treat logics as
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu data. All the functions in the type class take the
69b1e90bbb27ce2dd365628c07c0f03a3ae97b26Robert Savu identity as first argument in order to determine the logic.
ad2e68e571352b6759441733df697e075ceed341Robert Savu
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz For logic (co)morphisms see "Logic.Comorphism"
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu This module uses multiparameter type classes with functional dependencies
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu (<http://www.haskell.org/haskellwiki/Functional_dependencies>)
37dd4c99dbe470cce3fe0d89a011186f080e8910Robert Savu for defining an interface for the notion of logic. Multiparameter type
37dd4c99dbe470cce3fe0d89a011186f080e8910Robert Savu classes are needed because a logic consists of a collection of types,
37dd4c99dbe470cce3fe0d89a011186f080e8910Robert Savu together with operations on these. Functional dependencies
37dd4c99dbe470cce3fe0d89a011186f080e8910Robert Savu are needed because no operation will involve all types of
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz the multiparameter type class; hence we need a method to derive
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu the missing types. We chose an easy way: for each logic, we
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu introduce a new singleton type that is the name, or constitutes the identity
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz of the logic. All other types of the multiparameter type class
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu depend on this /identity constituting/ type, and all operations take
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu the 'identity constituting' type as first arguments. The value
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu of the argument of the /identity constituting/ type is irrelevant
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz (note that there is only one value of such a type anyway).
ad2e68e571352b6759441733df697e075ceed341Robert Savu
ad2e68e571352b6759441733df697e075ceed341Robert Savu Note that we tend to use @lid@ both for the /identity type/
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu of a logic, as well as for its unique inhabitant, i.e. @lid :: lid@.
ad2e68e571352b6759441733df697e075ceed341Robert Savu
ad2e68e571352b6759441733df697e075ceed341Robert Savu The other types involved in the definition of logic are as follows:
ad2e68e571352b6759441733df697e075ceed341Robert Savu
ad2e68e571352b6759441733df697e075ceed341Robert Savu * sign: signatures, that is, contexts, or non-logical vocabularies,
ad2e68e571352b6759441733df697e075ceed341Robert Savu typically consisting of a set of declared sorts, predicates,
ad2e68e571352b6759441733df697e075ceed341Robert Savu function symbols, propositional letters etc., together with their
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu typing.
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu * sentence: logical formulas.
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu
ad2e68e571352b6759441733df697e075ceed341Robert Savu * basic_spec: abstract syntax of basic specifications. The latter are
ad2e68e571352b6759441733df697e075ceed341Robert Savu human-readable presentations of a signature together with some sentences.
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu * symbol: symbols that may occur in a signature, fully qualified
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu with their types
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu * raw_symbol: symbols that may occur in a signature, possibly not
ad2e68e571352b6759441733df697e075ceed341Robert Savu or partially qualified
ad2e68e571352b6759441733df697e075ceed341Robert Savu
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz * morphism: maps between signatures (typically preserving the structure).
ad2e68e571352b6759441733df697e075ceed341Robert Savu
ad2e68e571352b6759441733df697e075ceed341Robert Savu * symb_items: abstract syntax of symbol lists, used for declaring some
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu symbols of a signature as hidden.
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu * symb_map_items: abstract syntax of symbol maps, i.e. human-readable
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu presentations of signature morphisms.
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu
ec95eebae395ed8858ba5b51d992d6b4c50cec86Robert Savu * sublogics: sublogics of the given logic. This type might be a
ec95eebae395ed8858ba5b51d992d6b4c50cec86Robert Savu record of Boolean flags, indicating whether some feature is
ec95eebae395ed8858ba5b51d992d6b4c50cec86Robert Savu present in the sublogi of not.
ec95eebae395ed8858ba5b51d992d6b4c50cec86Robert Savu
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu * proof_tree: proof trees.
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu References:
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu J. A. Goguen and R. M. Burstall
ec95eebae395ed8858ba5b51d992d6b4c50cec86Robert Savu Institutions: Abstract Model Theory for Specification and
ad2e68e571352b6759441733df697e075ceed341Robert Savu Programming
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz JACM 39, p. 95-146, 1992
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu (general notion of logic - model theory only)
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu J. Meseguer
ad2e68e571352b6759441733df697e075ceed341Robert Savu General Logics
ad2e68e571352b6759441733df697e075ceed341Robert Savu Logic Colloquium 87, p. 275-329, North Holland, 1989
e09066e7b76cea97557974b825bb057455b24ab0Robert Savu (general notion of logic - also proof theory;
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu notion of logic representation, called map there)
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz
ad2e68e571352b6759441733df697e075ceed341Robert Savu T. Mossakowski:
b3df7e69d4d6066fdfae0a8a2f3b4a161eaaf540Robert Savu Specification in an arbitrary institution with symbols
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu 14th WADT 1999, LNCS 1827, p. 252-270
ad306df140215d8fb88d14bbb7d685011e0f770bRobert Savu (treatment of symbols and raw symbols, see also CASL semantics
ad2e68e571352b6759441733df697e075ceed341Robert Savu in the CASL reference manual)
ad2e68e571352b6759441733df697e075ceed341Robert Savu
ad2e68e571352b6759441733df697e075ceed341Robert Savu T. Mossakowski, B. Klin:
ad2e68e571352b6759441733df697e075ceed341Robert Savu Institution Independent Static Analysis for CASL
a9c461443a740732a62d58c1c465b88cba3c606bRobert Savu 15h WADT 2001, LNCS 2267, p. 221-237, 2002.
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz (what is needed for static anaylsis)
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz
0a03acf9fa28e6ff00f4d7c9c6acbae64cf09c56Ewaryst Schulz S. Autexier and T. Mossakowski
239330cd665aac95fcf9cf95449594c96667cbc2Robert Savu Integrating HOLCASL into the Development Graph Manager MAYA
FroCoS 2002, LNCS 2309, p. 2-17, 2002.
(interface to provers)
CoFI (ed.): CASL Reference Manual, LNCS 2960, Springer Verlag, 2004.
(static semantics of CASL structured and architectural specifications)
T. Mossakowski
Heterogeneous specification and the heterogeneous tool set
Habilitation thesis, University of Bremen, 2005
(the general picture of heterogeneous specification)
-}
module Logic.Logic where
import Logic.Prover (Prover, ConsChecker, Theory(..))
import Taxonomy.MMiSSOntology (MMiSSOntology)
import ATC.DefaultMorphism ()
import Common.AS_Annotation
import Common.ATerm.Lib (ShATermConvertible)
import Common.Amalgamate
import Common.AnnoState
import Common.Consistency
import Common.DefaultMorphism
import Common.Doc
import Common.DocUtils
import Common.ExtSign
import Common.GlobalAnnotations
import Common.Id
import Common.Lib.Graph
import Common.LibName
import Common.Result
import Common.Taxonomy
import qualified Data.Set as Set
import qualified Data.Map as Map
import Data.Typeable
-- | Stability of logic implementations
data Stability = Stable | Testing | Unstable | Experimental
deriving (Eq, Show)
-- | shortcut for class constraints
class (Show a, Pretty a, Typeable a, ShATermConvertible a)
=> PrintTypeConv a
-- | shortcut for class constraints with equality
class (Eq a, PrintTypeConv a) => EqPrintTypeConv a
instance (Show a, Pretty a, Typeable a,
ShATermConvertible a) => PrintTypeConv a
instance (Eq a, PrintTypeConv a) => EqPrintTypeConv a
-- | maps from a to a
type EndoMap a = Map.Map a a
{- | the name of a logic.
Define instances like "data CASL = CASL deriving Show"
-}
class Show lid => Language lid where
language_name :: lid -> String
language_name i = show i
description :: lid -> String
-- default implementation
description _ = "No description available"
{- | Categories are given as usual: objects, morphisms, identities,
domain, codomain and composition. The type id is the name, or
the identity of the category. It is an argument to all functions
of the type class, serving disambiguation among instances
(via the functional dependency lid -> object morphism).
The types for objects and morphisms may be restricted to
subtypes, using legal_obj and legal_mor. For example, for the
category of sets and injective maps, legal_mor would check
injectivity. Since Eq is a subclass of Category, it is also
possible to impose a quotient on the types for objects and morphisms.
-}
class (Eq object, Eq morphism)
=> Category object morphism | morphism -> object where
-- | identity morphisms
ide :: object -> morphism
-- | composition, in diagrammatic order
comp :: morphism -> morphism -> Result morphism
-- | domain and codomain of morphisms
dom, cod :: morphism -> object
-- | the inverse of a morphism
inverse :: morphism -> Result morphism
inverse _ = fail "Logic.Logic.Category.inverse not implemented"
-- | test if the signature morphism an inclusion
isInclusion :: morphism -> Bool
isInclusion _ = False -- in general no inclusion
-- | is a value of type morphism denoting a legal morphism?
legal_mor :: morphism -> Bool
instance Eq sign => Category sign (DefaultMorphism sign) where
dom = domOfDefaultMorphism
cod = codOfDefaultMorphism
ide = ideOfDefaultMorphism
isInclusion = isInclusionDefaultMorphism
comp = compOfDefaultMorphism
legal_mor = legalDefaultMorphism (const True)
{- | Abstract syntax, parsing and printing.
There are three types for abstract syntax:
basic_spec is for basic specifications (see CASL RefMan p. 5ff.),
symb_items is for symbol lists (see CASL RefMan p. 35ff.),
symb_map_items is for symbol maps (see CASL RefMan p. 35ff.).
-}
class (Language lid, PrintTypeConv basic_spec,
EqPrintTypeConv symb_items,
EqPrintTypeConv symb_map_items)
=> Syntax lid basic_spec symb_items symb_map_items
| lid -> basic_spec symb_items symb_map_items
where
-- | parser for basic specifications
parse_basic_spec :: lid -> Maybe(AParser st basic_spec)
-- | parser for symbol lists
parse_symb_items :: lid -> Maybe(AParser st symb_items)
-- | parser for symbol maps
parse_symb_map_items :: lid -> Maybe(AParser st symb_map_items)
-- default implementations
parse_basic_spec _ = Nothing
parse_symb_items _ = Nothing
parse_symb_map_items _ = Nothing
{- | Sentences, provers and symbols.
Provers capture the entailment relation between sets of sentences
and sentences. They may return proof trees witnessing proofs.
Signatures are equipped with underlying sets of symbols
(such that the category of signatures becomes a concrete category),
see CASL RefMan p. 191ff.
-}
class (Language lid, Category sign morphism, Ord sentence,
Ord symbol, -- for efficient lookup
PrintTypeConv sign, PrintTypeConv morphism,
PrintTypeConv sentence, PrintTypeConv symbol)
=> Sentences lid sentence sign morphism symbol
| lid -> sentence sign morphism symbol
where
----------------------- sentences ---------------------------
-- | check whether a sentence belongs to a signature
is_of_sign :: lid -> sentence -> signature -> Bool
is_of_sign l _ _ = error $ statErrMsg l "is_of_sign"
-- | sentence translation along a signature morphism
map_sen :: lid -> morphism -> sentence -> Result sentence
map_sen l _ _ = statErr l "map_sen"
-- | simplification of sentences (leave out qualifications)
simplify_sen :: lid -> sign -> sentence -> sentence
simplify_sen _ _ = id -- default implementation
-- | parsing of sentences
parse_sentence :: lid -> Maybe (AParser st sentence)
parse_sentence _ = Nothing
print_sign :: lid -> sign -> Doc
print_sign _ = pretty
-- | print a sentence with comments
print_named :: lid -> Named sentence -> Doc
print_named _ = printAnnoted (addBullet . pretty) . fromLabelledSen
----------------------- symbols ---------------------------
-- | set of symbols for a signature
sym_of :: lid -> sign -> Set.Set symbol
sym_of _ _ = Set.empty
-- | symbol map for a signature morphism
symmap_of :: lid -> morphism -> EndoMap symbol
symmap_of _ _ = Map.empty
-- | symbols have a name, see CASL RefMan p. 192
sym_name :: lid -> symbol -> Id
sym_name l _ = error $ statErrMsg l "sym_name"
-- | a dummy static analysis function to allow type checking *.inline.hs files
inlineAxioms :: StaticAnalysis lid
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol => lid -> String -> [Named sentence]
inlineAxioms _ _ = error "inlineAxioms"
-- | fail function for static analysis
statErr :: (Language lid, Monad m) => lid -> String -> m a
statErr lid = fail . statErrMsg lid
-- | error message for static analysis
statErrMsg :: (Language lid) => lid -> String -> String
statErrMsg lid str = "Logic." ++ str ++ " nyi for: " ++ language_name lid
{- static analysis
This type class provides the data needed for an institution with symbols,
as explained in the structured specification semantics in the CASL
reference manual, chapter III.4.
The static analysis computes signatures from basic specifications,
and signature morphisms from symbol lists and symbol maps. The latter
needs an intermediate stage, so-called raw symbols, which are possibly
unqualified symbols. Normal symbols are always fully qualified.
In the CASL reference manual, our symbols are called "signature symbols",
and our raw symbols are called "symbols". (Terminology should be adapted.)
-}
class ( Syntax lid basic_spec symb_items symb_map_items
, Sentences lid sentence sign morphism symbol
, Ord raw_symbol, Pretty raw_symbol, Typeable raw_symbol)
=> StaticAnalysis lid
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol
| lid -> basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol
where
----------------------- static analysis ---------------------------
{- | static analysis of basic specifications and symbol maps.
The resulting bspec has analyzed axioms in it.
The resulting sign is an extension of the input sign
plus newly declared or redeclared symbols.
See CASL RefMan p. 138 ff. -}
basic_analysis :: lid ->
Maybe((basic_spec, -- abstract syntax tree
sign, -- input signature, for the local
-- environment, carrying the previously
-- declared symbols
GlobalAnnos) -> -- global annotations
Result (basic_spec, ExtSign sign symbol
, [Named sentence]))
-- default implementation
basic_analysis _ = Nothing
-- | static analysis of symbol maps, see CASL RefMan p. 222f.
stat_symb_map_items ::
lid -> [symb_map_items] -> Result (EndoMap raw_symbol)
stat_symb_map_items l _ = statErr l "stat_symb_map_items"
-- | static analysis of symbol lists, see CASL RefMan p. 221f.
stat_symb_items :: lid -> [symb_items] -> Result [raw_symbol]
stat_symb_items l _ = statErr l "stat_symb_items"
------------------------- amalgamation ---------------------------
{- | Computation of colimits of signature diagram.
Indeed, it suffices to compute a coconce that is weakly amalgamable
see Till Mossakowski,
Heterogeneous specification and the heterogeneous tool set
p. 25ff. -}
-- | architectural sharing analysis, see CASL RefMan p. 247ff.
ensures_amalgamability :: lid ->
([CASLAmalgOpt], -- the program options
Gr sign (Int,morphism), -- the diagram to be analyzed
[(Int, morphism)], -- the sink
Gr String String) -- the descriptions of nodes and edges
-> Result Amalgamates
ensures_amalgamability l _ = warning Amalgamates
("amalgamability test not implemented for logic " ++ show l)
nullRange
-- | signature colimits
signature_colimit :: lid -> Gr sign (Int, morphism)
-> Result (sign, Map.Map Int morphism)
signature_colimit l _ = statErr l "signature_colimit"
{- | rename and qualify the symbols considering incoming morphisms,
code out overloading and
create sentences for the overloading relation -}
qualify :: lid -> SIMPLE_ID -> LIB_ID -> [morphism] -> sign
-> Result (morphism, [Named sentence])
qualify l _ _ _ = statErr l "qualify"
-------------------- symbols and raw symbols ---------------------
{- | Construe a symbol, like f:->t, as a raw symbol.
This is a one-sided inverse to the function SymSySigSym
in the CASL RefMan p. 192. -}
symbol_to_raw :: lid -> symbol -> raw_symbol
symbol_to_raw l _ = error $ statErrMsg l "symbol_to_raw"
{- | Construe an identifier, like f, as a raw symbol.
See CASL RefMan p. 192, function IDAsSym -}
id_to_raw :: lid -> Id -> raw_symbol
id_to_raw l _ = error $ statErrMsg l "id_to_raw"
{- | Check wether a symbol matches a raw symbol, for
example, f:s->t matches f. See CASL RefMan p. 192 -}
matches :: lid -> symbol -> raw_symbol -> Bool
matches l _ _ = error $ statErrMsg l "matches"
--------------- operations on signatures and morphisms -----------
-- | the empty (initial) signature, see CASL RefMan p. 193
empty_signature :: lid -> sign
-- | union of signatures, see CASL RefMan p. 193
signature_union :: lid -> sign -> sign -> Result sign
signature_union l _ _ = statErr l "signature_union"
-- | intersection of signatures
intersection :: lid -> sign -> sign -> Result sign
intersection l _ _ = statErr l "intersection"
-- | final union of signatures, see CASL RefMan p. 194
final_union :: lid -> sign -> sign -> Result sign
final_union l _ _ = statErr l "final_union"
-- | union of signature morphims, see CASL RefMan p. 196
morphism_union :: lid -> morphism -> morphism -> Result morphism
morphism_union l _ _ = statErr l "morphism_union"
{- | construct the inclusion morphisms between subsignatures,
see CASL RefMan p. 194 -}
inclusion :: lid -> sign -> sign -> Result morphism
inclusion l _ _ = statErr l "inclusion"
{- | the signature (co)generated by a set of symbols in another
signature is the smallest (largest) signature containing
(excluding) the set of symbols. Needed for revealing and
hiding, see CASL RefMan p. 197ff. -}
generated_sign, cogenerated_sign ::
lid -> Set.Set symbol -> sign -> Result morphism
generated_sign l _ _ = statErr l "generated_sign"
cogenerated_sign l _ _ = statErr l "cogenerated_sign"
{- | Induce a signature morphism from a source signature and
a raw symbol map. Needed for translation (SP with SM).
See CASL RefMan p. 198 -}
induced_from_morphism ::
lid -> EndoMap raw_symbol -> sign -> Result morphism
induced_from_morphism l _ _ = statErr l "induced_from_morphism"
{- | Induce a signature morphism between two signatures by a
raw symbol map. Needed for instantiation and views.
See CASL RefMan p. 198f. -}
induced_from_to_morphism ::
lid -> EndoMap raw_symbol -> ExtSign sign symbol
-> ExtSign sign symbol -> Result morphism
induced_from_to_morphism l _ _ _ =
statErr l "induced_from_to_morphism"
{- | Check whether a signature morphism is transportable.
See CASL RefMan p. 304f. -}
is_transportable :: lid -> morphism -> Bool
is_transportable _ _ = False -- safe default
{- | Check whether the underlying symbol map of a signature morphism
is injective -}
is_injective :: lid -> morphism -> Bool
is_injective _ _ = False -- safe default
------------------- generate taxonomy from theory ----------------
-- | generate an ontological taxonomy, if this makes sense
theory_to_taxonomy :: lid
-> TaxoGraphKind
-> MMiSSOntology
-> sign -> [Named sentence]
-> Result MMiSSOntology
theory_to_taxonomy l _ _ _ _ = statErr l "theory_to_taxonomy"
-- | subsignatures, see CASL RefMan p. 194
is_subsig :: StaticAnalysis lid
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol => lid -> sign -> sign -> Bool
is_subsig lid s = maybe False (const True) . maybeResult . inclusion lid s
{- | semi lattices with top (needed for sublogics). Note that `Ord` is
only used for efficiency and is not related to the /partial/ order given
by the lattice. Only `Eq` is used to define `isSubElem` -}
class (Ord l, Show l) => SemiLatticeWithTop l where
join :: l -> l -> l
top :: l
instance SemiLatticeWithTop () where
join _ _ = ()
top = ()
-- | less or equal for semi lattices
isSubElem :: SemiLatticeWithTop l => l -> l -> Bool
isSubElem a b = join a b == b
-- | class providing the minimal sublogic of an item
class MinSublogic sublogic item where
minSublogic :: item -> sublogic
-- | a default instance for no sublogics
instance MinSublogic () a where
minSublogic _ = ()
-- | class providing also the projection of an item to a sublogic
class MinSublogic sublogic item => ProjectSublogic sublogic item where
projectSublogic :: sublogic -> item -> item
-- | a default instance for no sublogics
instance ProjectSublogic () b where
projectSublogic _ = id
-- | like ProjectSublogic, but providing a partial projection
class MinSublogic sublogic item => ProjectSublogicM sublogic item where
projectSublogicM :: sublogic -> item -> Maybe item
-- | a default instance for no sublogics
instance ProjectSublogicM () b where
projectSublogicM _ = Just
-- | class for providing a list of sublogic names
class Sublogics l where
sublogic_names :: l -> [String]
instance Sublogics () where
sublogic_names () = [""]
{- Type class logic. The central type class of Hets, providing the
interface for logics. This type class is instantiated for many logics,
and it is used for the logic independent parts of Hets.
It hence provides an sbatraction barrier between logic specific and
logic indepdendent code.
This type class extends the class StaticAnalysis by a sublogic mechanism.
Sublogics are important since they avoid the need to provide an own
instance of the class logic for each sublogic. Instead, the sublogic
can use the datastructures and operations of the main logic, and
functions are provided to test whether a given item lies within the
sublogic. Also, projection functions from a super-logic to a sublogic
are provided.
-}
class (StaticAnalysis lid
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol,
SemiLatticeWithTop sublogics,
MinSublogic sublogics sentence,
ProjectSublogic sublogics basic_spec,
ProjectSublogicM sublogics symb_items,
ProjectSublogicM sublogics symb_map_items,
ProjectSublogic sublogics sign,
ProjectSublogic sublogics morphism,
ProjectSublogicM sublogics symbol,
Typeable sublogics,
ShATermConvertible sublogics,
Sublogics sublogics,
Eq proof_tree, Show proof_tree, ShATermConvertible proof_tree,
Ord proof_tree, Typeable proof_tree)
=> Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree
| lid -> sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree
where
-- | stability of the implementation
stability :: lid -> Stability
-- default
stability _ = Experimental
-- | for a process logic, return its data logic
data_logic :: lid -> Maybe AnyLogic
data_logic _ = Nothing
-- | the top sublogic, corresponding to the whole logic
top_sublogic :: lid -> sublogics
top_sublogic _ = top
-- | list all the sublogics of the current logic
all_sublogics :: lid -> [sublogics]
all_sublogics li = [top_sublogic li]
{- | provide the embedding of a projected signature into the
original signature -}
proj_sublogic_epsilon :: lid -> sublogics -> sign -> morphism
proj_sublogic_epsilon _ _ s = ide s
----------------------- provers ---------------------------
-- | several provers can be provided. See module "Logic.Prover"
provers :: lid -> [Prover sign sentence sublogics proof_tree]
provers _ = [] -- default implementation
-- | consistency checkers
cons_checkers :: lid
-> [ConsChecker sign sentence
sublogics morphism proof_tree]
cons_checkers _ = [] -- default implementation
-- | conservativity checkers
conservativityCheck :: lid -> (sign, [Named sentence]) ->
morphism -> [Named sentence]
-> Result (Maybe (ConsistencyStatus,[sentence]))
conservativityCheck l _ _ _ = statErr l "conservativityCheck"
-- | the empty proof tree
empty_proof_tree :: lid -> proof_tree
empty_proof_tree l = error $ statErrMsg l "empty_proof_tree"
----------------------------------------------------------------
-- Derived functions
----------------------------------------------------------------
-- | the empty theory
empty_theory :: StaticAnalysis lid
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol =>
lid -> Theory sign sentence proof_tree
empty_theory lid = Theory (empty_signature lid) Map.empty
----------------------------------------------------------------
-- Existential type covering any logic
----------------------------------------------------------------
-- | the disjoint union of all logics
data AnyLogic = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
Logic lid
deriving Typeable
instance Show AnyLogic where
show (Logic lid) = language_name lid
instance Eq AnyLogic where
Logic lid1 == Logic lid2 = language_name lid1 == language_name lid2
{- class hierarchy:
Language
__________/
Category
| /
Sentences Syntax
\ /
StaticAnalysis (no sublogics)
\
\
Logic
-}