Grothendieck.hs revision df51b4ac47a56b557d53ec77cc60aaf86c59d31b
{-# OPTIONS -fallow-overlapping-instances -fallow-incoherent-instances #-}
{- |
Module : $Header$
Copyright : (c) Till Mossakowski, and Uni Bremen 2002-2004
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : non-portable (overlapping instances, dynamics, existentials)
The Grothendieck logic is defined to be the
heterogeneous logic over the logic graph.
This will be the logic over which the data
structures and algorithms for specification in-the-large
are built.
References:
R. Diaconescu:
Grothendieck institutions
J. applied categorical structures 10, 2002, p. 383-402.
T. Mossakowski:
Heterogeneous development graphs and heterogeneous borrowing
Fossacs 2002, LNCS 2303, p. 326-341
T. Mossakowski: Foundations of heterogeneous specification
Submitted
T. Mossakowski:
Relating CASL with Other Specification Languages:
the Institution Level
Theoretical Computer Science 286, 2002, p. 367-475
Todo:
-}
module Logic.Grothendieck where
import Logic.Logic
import Logic.Prover
import Logic.Comorphism
import Common.PrettyPrint
import Common.PPUtils
import Common.Lib.Pretty
import Common.Lib.Graph
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Result
import Common.AS_Annotation
import Common.Print_AS_Annotation
import Common.ListUtils
import Data.Dynamic
import Common.DynamicUtils
import qualified Data.List as List
import Data.Maybe
import Control.Monad
------------------------------------------------------------------
--"Grothendieck" versions of the various parts of type class Logic
------------------------------------------------------------------
-- | Grothendieck basic specifications
data G_basic_spec = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_basic_spec lid basic_spec
instance Show G_basic_spec where
show (G_basic_spec _ s) = show s
instance PrettyPrint G_basic_spec where
printText0 ga (G_basic_spec _ s) = printText0 ga s
-- | Grothendieck sentences
data G_sentence = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sentence lid sentence
instance Show G_sentence where
show (G_sentence _ s) = show s
-- | Grothendieck sentence lists
data G_l_sentence_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_l_sentence_list lid [Named sentence]
instance Show G_l_sentence_list where
show (G_l_sentence_list _ s) = show s
instance Eq G_l_sentence_list where
(G_l_sentence_list i1 nl1) == (G_l_sentence_list i2 nl2) =
coerce i1 i2 nl1 == Just nl2
eq_G_l_sentence_set :: G_l_sentence_list -> G_l_sentence_list -> Bool
eq_G_l_sentence_set (G_l_sentence_list i1 nl1) (G_l_sentence_list i2 nl2) =
case coerce i1 i2 nl1 of
Just nl1' -> Set.fromList nl1' == Set.fromList nl2
Nothing -> False
-- | Grothendieck signatures
data G_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sign lid sign
tyconG_sign :: TyCon
tyconG_sign = mkTyCon "Logic.Grothendieck.G_sign"
instance Typeable G_sign where
typeOf _ = mkTyConApp tyconG_sign []
instance Eq G_sign where
(G_sign i1 sigma1) == (G_sign i2 sigma2) =
coerce i1 i2 sigma1 == Just sigma2
-- | prefer a faster subsignature test if possible
is_subgsign :: G_sign -> G_sign -> Bool
is_subgsign (G_sign i1 sigma1) (G_sign i2 sigma2) =
maybe False (is_subsig i1 sigma1) $ coerce i2 i1 sigma2
instance Show G_sign where
show (G_sign _ s) = show s
instance PrettyPrint G_sign where
printText0 ga (G_sign _ s) = printText0 ga s
langNameSig :: G_sign -> String
langNameSig (G_sign lid _) = language_name lid
-- | Grothendieck signature lists
data G_sign_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sign_list lid [sign]
-- | Grothendieck extended signatures
data G_ext_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_ext_sign lid sign (Set.Set symbol)
tyconG_ext_sign :: TyCon
tyconG_ext_sign = mkTyCon "Logic.Grothendieck.G_ext_sign"
instance Typeable G_ext_sign where
typeOf _ = mkTyConApp tyconG_ext_sign []
instance Eq G_ext_sign where
(G_ext_sign i1 sigma1 sys1) == (G_ext_sign i2 sigma2 sys2) =
coerce i1 i2 sigma1 == Just sigma2
&& coerce i1 i2 sys1 == Just sys2
instance Show G_ext_sign where
show (G_ext_sign _ s _) = show s
instance PrettyPrint G_ext_sign where
printText0 ga (G_ext_sign _ s _) = printText0 ga s
langNameExtSig :: G_ext_sign -> String
langNameExtSig (G_ext_sign lid _ _) = language_name lid
-- | Grothendieck theories
data G_theory = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_theory lid sign [Named sentence]
instance Eq G_theory where
th1 == th2 = signOf th1 == signOf th2 &&
eq_G_l_sentence_set (sensOf th1) (sensOf th2)
instance Show G_theory where
show (G_theory _ sign sens) =
show sign ++ "\n" ++ show sens
instance PrettyPrint G_theory where
printText0 ga (G_theory _ sign sens) =
printText0 ga sign $$ printText0 ga sens
-- | compute sublogic of a theory
sublogicOfTh :: G_theory -> G_sublogics
sublogicOfTh (G_theory lid sigma sens) =
let sub = foldr Logic.Logic.join
(min_sublogic_sign lid sigma)
(map (min_sublogic_sentence lid . sentence) sens)
in G_sublogics lid sub
-- | simplify a theory (throw away qualifications)
simplifyTh :: G_theory -> G_theory
simplifyTh (G_theory lid sigma sens) =
G_theory lid sigma (map (mapNamed (simplify_sen lid sigma)) sens)
-- | Grothendieck symbols
data G_symbol = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symbol lid symbol
instance Show G_symbol where
show (G_symbol _ s) = show s
instance Eq G_symbol where
(G_symbol i1 s1) == (G_symbol i2 s2) =
coerce i1 i2 s1 == Just s2
-- | Grothendieck symbol lists
data G_symb_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_items_list lid [symb_items]
instance Show G_symb_items_list where
show (G_symb_items_list _ l) = show l
instance PrettyPrint G_symb_items_list where
printText0 ga (G_symb_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
instance Eq G_symb_items_list where
(G_symb_items_list i1 s1) == (G_symb_items_list i2 s2) =
coerce i1 i2 s1 == Just s2
-- | Grothendieck symbol maps
data G_symb_map_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_map_items_list lid [symb_map_items]
instance Show G_symb_map_items_list where
show (G_symb_map_items_list _ l) = show l
instance PrettyPrint G_symb_map_items_list where
printText0 ga (G_symb_map_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
instance Eq G_symb_map_items_list where
(G_symb_map_items_list i1 s1) == (G_symb_map_items_list i2 s2) =
coerce i1 i2 s1 == Just s2
-- | Grothendieck diagrams
data G_diagram = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_diagram lid (Diagram sign morphism)
-- | Grothendieck sublogics
data G_sublogics = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sublogics lid sublogics
tyconG_sublogics :: TyCon
tyconG_sublogics = mkTyCon "Logic.Grothendieck.G_sublogics"
instance Typeable G_sublogics where
typeOf _ = mkTyConApp tyconG_sublogics []
instance Show G_sublogics where
show (G_sublogics lid sub) = case sublogic_names lid sub of
[] -> error "show G_sublogics"
h : _ -> show lid ++ "." ++ h
instance Eq G_sublogics where
(G_sublogics lid1 l1) == (G_sublogics lid2 l2) =
coerce lid1 lid2 l1 == Just l2
instance Ord G_sublogics where
compare (G_sublogics lid1 l1) (G_sublogics lid2 l2) =
case coerce lid1 lid2 l2 of
Just l2' -> compare l1 l2' {-if l1==l2' then EQ
else if l1 <<= l2' then LT
else GT-}
Nothing -> error "Attempt to compare sublogics of different logics"
-- | Homogeneous Grothendieck signature morphisms
data G_morphism = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_morphism lid morphism
instance Show G_morphism where
show (G_morphism _ l) = show l
----------------------------------------------------------------
-- Existential types for the logic graph
----------------------------------------------------------------
-- | Existential type for comorphisms
data AnyComorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
Comorphism cid
instance Eq AnyComorphism where
Comorphism cid1 == Comorphism cid2 =
constituents cid1 == constituents cid2
-- need to be refined, using comorphism translations !!!
instance Show AnyComorphism where
show (Comorphism cid) =
language_name cid
++" : "++language_name (sourceLogic cid)
++" -> "++language_name (targetLogic cid)
tyconAnyComorphism :: TyCon
tyconAnyComorphism = mkTyCon "Logic.Grothendieck.AnyComorphism"
instance Typeable AnyComorphism where
typeOf _ = mkTyConApp tyconAnyComorphism []
-- | compute the identity comorphism for a logic
idComorphism :: AnyLogic -> AnyComorphism
idComorphism (Logic lid) = Comorphism (IdComorphism lid (top_sublogic lid))
-- | Test whether a comporphism is the identity
isIdComorphism :: AnyComorphism -> Bool
isIdComorphism (Comorphism cid) =
constituents cid == []
-- | Compose comorphisms
compComorphism :: Monad m => AnyComorphism -> AnyComorphism -> m AnyComorphism
compComorphism cm1@(Comorphism cid1) cm2@(Comorphism cid2) =
case coerce (targetLogic cid1) (sourceLogic cid2) (targetSublogic cid1) of
Just sl1 ->
if sl1 <= sourceSublogic cid2
then case (isIdComorphism cm1,isIdComorphism cm2) of
(True,_) -> return cm2
(_,True) -> return cm1
_ -> return $ Comorphism (CompComorphism cid1 cid2)
else fail ("Sublogic mismatch in composition of "++language_name cid1++
" and "++language_name cid2)
Nothing -> fail ("Logic mismatch in composition of "++language_name cid1++
" and "++language_name cid2)
-- | Logic graph
data LogicGraph = LogicGraph {
logics :: Map.Map String AnyLogic,
comorphisms :: Map.Map String AnyComorphism,
inclusions :: Map.Map (String,String) AnyComorphism,
unions :: Map.Map (String,String) (AnyComorphism,AnyComorphism)
}
emptyLogicGraph :: LogicGraph
-- | find a logic in a logic graph
lookupLogic :: Monad m => String -> String -> LogicGraph -> m AnyLogic
lookupLogic error_prefix logname logicGraph =
case Map.lookup logname (logics logicGraph) of
Nothing -> fail (error_prefix++" in LogicGraph logic \""
++logname++"\" unknown")
Just lid -> return lid
-- | union to two logics
logicUnion :: LogicGraph -> AnyLogic -> AnyLogic -> Result (AnyComorphism,AnyComorphism)
logicUnion lg l1@(Logic lid1) l2@(Logic lid2) =
case logicInclusion lg l1 l2 of
Result _ (Just c) -> return (c,idComorphism l2)
_ -> case logicInclusion lg l2 l1 of
Result _ (Just c) -> return (idComorphism l1,c)
_ -> case Map.lookup (ln1,ln2) (unions lg) of
Just u -> return u
Nothing -> case Map.lookup (ln2,ln1) (unions lg) of
Just (c2,c1) -> return (c1,c2)
Nothing -> fail ("Union of logics "++ln1++" and "++ln2++" does not exist")
where ln1 = language_name lid1
ln2 = language_name lid2
-- | find a comorphism in a logic graph
lookupComorphism :: Monad m => String -> LogicGraph -> m AnyComorphism
lookupComorphism coname logicGraph = do
let nameList = splitBy ';' coname
cs <- sequence $ map lookupN nameList
case cs of
c:cs1 -> foldM compComorphism c cs1
_ -> fail ("Illgegal comorphism name: "++coname)
where
lookupN name =
case name of
'i':'d':'_':logic -> do
let mainLogic = takeWhile (/= '.') logic
l <- maybe (fail ("Cannot find Logic "++mainLogic)) return
$ Map.lookup mainLogic (logics logicGraph)
return $ idComorphism l
_ -> maybe (fail ("Cannot find logic comorphism "++name)) return
$ Map.lookup name (comorphisms logicGraph)
-- | auxiliary existential type needed for composition of comorphisms
data AnyComorphismAux lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =
forall cid .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
ComorphismAux cid lid1 lid2 sign1 morphism2
tyconAnyComorphismAux :: TyCon
tyconAnyComorphismAux = mkTyCon "Logic.Grothendieck.AnyComorphismAux"
instance Typeable (AnyComorphismAux lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2)
where typeOf _ = mkTyConApp tyconG_sign []
instance Show (AnyComorphismAux lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2)
where show _ = "<AnyComorphismAux>"
------------------------------------------------------------------
-- The Grothendieck signature category
------------------------------------------------------------------
-- | Grothendieck signature morphisms
data GMorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
GMorphism cid sign1 morphism2
instance Eq GMorphism where
GMorphism cid1 sigma1 mor1 == GMorphism cid2 sigma2 mor2
= Comorphism cid1 == Comorphism cid2 &&
coerce cid1 cid1 (sigma1, mor1) == Just (sigma2, mor2)
hasIdComorphism :: GMorphism -> Bool
hasIdComorphism (GMorphism cid _ _) =
isIdComorphism (Comorphism cid)
data Grothendieck = Grothendieck deriving Show
instance Language Grothendieck
instance Show GMorphism where
show (GMorphism cid s m) = show cid ++ "(" ++ show s ++ ")" ++ show m
instance PrettyPrint GMorphism where
printText0 ga (GMorphism cid s m) =
ptext (show cid)
<+> -- ptext ":" <+> ptext (show (sourceLogic cid)) <+>
-- ptext "->" <+> ptext (show (targetLogic cid)) <+>
ptext "(" <+> printText0 ga s <+> ptext ")"
$$
printText0 ga m
instance Category Grothendieck G_sign GMorphism where
ide _ (G_sign lid sigma) =
GMorphism (IdComorphism lid (top_sublogic lid)) sigma (ide lid sigma)
comp _
(GMorphism r1 sigma1 mor1)
(GMorphism r2 _sigma2 mor2) =
do let lid1 = sourceLogic r1
lid2 = targetLogic r1
lid3 = sourceLogic r2
lid4 = targetLogic r2
ComorphismAux r1' _ _ sigma1' mor1' <-
(coerce lid2 lid3 $ ComorphismAux r1 lid1 lid2 sigma1 mor1)
mor1'' <- map_morphism r2 mor1'
mor <- comp lid4 mor1'' mor2
return (GMorphism (CompComorphism r1' r2) sigma1' mor)
dom _ (GMorphism r sigma _mor) =
G_sign (sourceLogic r) sigma
cod _ (GMorphism r _sigma mor) =
G_sign lid2 (cod lid2 mor)
where lid2 = targetLogic r
legal_obj _ (G_sign lid sigma) = legal_obj lid sigma
legal_mor _ (GMorphism r sigma mor) =
legal_mor lid2 mor &&
case maybeResult $ map_sign r sigma of
Just (sigma',_) -> sigma' == cod lid2 mor
Nothing -> False
where lid2 = targetLogic r
-- | Embedding of homogeneous signature morphisms as Grothendieck sig mors
gEmbed :: G_morphism -> GMorphism
gEmbed (G_morphism lid mor) =
GMorphism (IdComorphism lid (top_sublogic lid)) (dom lid mor) mor
-- | Embedding of comorphisms as Grothendieck sig mors
gEmbedComorphism :: AnyComorphism -> G_sign -> Result GMorphism
gEmbedComorphism (Comorphism cid) (G_sign lid sig) = do
sig' <- mcoerce (sourceLogic cid) lid "gEmbedComorphism: logic mismatch" sig
(sigTar,_) <- map_sign cid sig'
let lidTar = targetLogic cid
return (GMorphism cid sig' (ide lidTar sigTar))
-- | heterogeneous union of two Grothendieck signatures
gsigUnion :: LogicGraph -> G_sign -> G_sign -> Result G_sign
gsigUnion lg gsig1@(G_sign lid1 sigma1) gsig2@(G_sign lid2 sigma2) =
if language_name lid1 == language_name lid2
then homogeneousGsigUnion gsig1 gsig2
else do
(Comorphism cid1,Comorphism cid2) <- logicUnion lg (Logic lid1) (Logic lid2)
let lidS1 = sourceLogic cid1
lidS2 = sourceLogic cid2
lidT1 = targetLogic cid1
lidT2 = targetLogic cid2
sigma1' <- mcoerce lid1 lidS1 "Union of signaturesa" sigma1
sigma2' <- mcoerce lid2 lidS2 "Union of signaturesb" sigma2
(sigma1'',_) <- map_sign cid1 sigma1' -- where to put axioms???
(sigma2'',_) <- map_sign cid2 sigma2' -- where to put axioms???
sigma2''' <- mcoerce lidT1 lidT2 "Union of signaturesc" sigma2''
sigma3 <- signature_union lidT1 sigma1'' sigma2'''
return (G_sign lidT1 sigma3)
-- | homogeneous Union of two Grothendieck signatures
homogeneousGsigUnion :: G_sign -> G_sign -> Result G_sign
homogeneousGsigUnion (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do
sigma2' <- mcoerce lid2 lid1 "Union of signaturesd" sigma2
sigma3 <- signature_union lid1 sigma1 sigma2'
return (G_sign lid1 sigma3)
-- | union of a list of Grothendieck signatures
gsigManyUnion :: LogicGraph -> [G_sign] -> Result G_sign
gsigManyUnion _ [] =
fail "union of emtpy list of signatures"
gsigManyUnion lg (gsigma : gsigmas) =
foldM (gsigUnion lg) gsigma gsigmas
-- | homogeneous Union of a list of morphisms
homogeneousMorManyUnion :: [G_morphism] -> Result G_morphism
homogeneousMorManyUnion [] =
fail "homogeneous union of emtpy list of morphisms"
homogeneousMorManyUnion (G_morphism lid mor : gmors) = do
mors <- let coerce_lid (G_morphism lid1 mor1) =
mcoerce lid lid1 "Union of signature morphisms" mor1
in sequence (map coerce_lid gmors)
bigMor <- let mor_union s1 s2 = do
s1' <- s1
morphism_union lid s1' s2
in foldl mor_union (return mor) mors
return (G_morphism lid bigMor)
-- | inclusion between two logics
logicInclusion :: LogicGraph -> AnyLogic -> AnyLogic -> Result AnyComorphism
logicInclusion logicGraph l1@(Logic lid1) (Logic lid2) =
let ln1 = language_name lid1
ln2 = language_name lid2 in
if ln1==ln2 then
return (idComorphism l1)
else case Map.lookup (ln1,ln2) (inclusions logicGraph) of
Just (Comorphism i) ->
return (Comorphism i)
Nothing ->
fail ("No inclusion from "++ln1++" to "++ln2++" found")
-- | inclusion morphism between two Grothendieck signatures
ginclusion :: LogicGraph -> G_sign -> G_sign -> Result GMorphism
ginclusion logicGraph (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do
Comorphism i <- logicInclusion logicGraph (Logic lid1) (Logic lid2)
sigma1' <- mcoerce lid1 (sourceLogic i) "Inclusion of signatures" sigma1
(sigma1'',_) <- map_sign i sigma1'
sigma2' <- mcoerce lid2 (targetLogic i) "Inclusion of signatures" sigma2
mor <- inclusion (targetLogic i) sigma1'' sigma2'
return (GMorphism i sigma1' mor)
-- | Composition of two Grothendieck signature morphisms
-- | with itermediate inclusion
compInclusion :: LogicGraph -> GMorphism -> GMorphism -> Result GMorphism
compInclusion lg mor1 mor2 = do
incl <- ginclusion lg (cod Grothendieck mor1) (dom Grothendieck mor2)
mor <- comp Grothendieck mor1 incl
comp Grothendieck mor mor2
-- | Composition of two Grothendieck signature morphisms
-- | with itermediate homogeneous inclusion
compHomInclusion :: GMorphism -> GMorphism -> Result GMorphism
compHomInclusion mor1 mor2 = compInclusion emptyLogicGraph mor1 mor2
-- | Translation of a G_theory along a GMorphism
translateG_theory :: GMorphism -> G_theory -> Result G_theory
translateG_theory (GMorphism cid sign1 morphism2)
(G_theory lid sign sens) = do
let tlid = targetLogic cid
--(sigma2,_) <- map_sign cid sign1
sens' <- mcoerce lid (sourceLogic cid) "translateG_theory" sens
sign' <- mcoerce lid (sourceLogic cid) "translateG_theory" sign
(sign'',sens'') <- map_theory cid (sign',sens')
sens''' <- mapM (mapNamedM $ map_sen tlid morphism2) sens''
return (G_theory tlid (cod tlid morphism2) sens''')
-- | Translation of a G_l_sentence_list along a GMorphism
translateG_l_sentence_list :: GMorphism -> G_l_sentence_list
-> Result G_l_sentence_list
translateG_l_sentence_list (GMorphism cid sign1 morphism2)
(G_l_sentence_list lid sens) = do
let tlid = targetLogic cid
--(sigma2,_) <- map_sign cid sign1
sens' <- mcoerce lid (sourceLogic cid) "Translation of sentence list" sens
sens'' <- mapM (mapNamedM $ map_sentence cid sign1) sens'
sens''' <- mapM (mapNamedM $ map_sen tlid morphism2) sens''
return (G_l_sentence_list tlid sens''')
-- | Join two G_theories
joinG_theories :: G_theory -> G_theory -> Result G_theory
joinG_theories (G_theory lid1 sig1 sens1) (G_theory lid2 sig2 sens2) = do
sens2' <- mcoerce lid1 lid2 "joinG_theories" sens2
sig2' <- mcoerce lid1 lid2 "joinG_theories" sig2
when (sig1 /= sig2') (fail ("joinG_theories: incompatible signatures: \nsig1:\n"++showPretty sig1 "\nsig2\n" ++ showPretty sig2' ""))
return (G_theory lid1 sig1 (sens1++sens2'))
-- | Flatten a list of G_theories
flatG_theories :: [G_theory] -> Result G_theory
flatG_theories [] = fail "Empty list of theories"
flatG_theories (th:ths) = foldM joinG_theories th ths
-- | Remove duplicate sentences from a G_theory
nubG_theory :: G_theory -> G_theory
nubG_theory (G_theory lid sig sens) = G_theory lid sig (List.nub sens)
-- | Get signature of a theory
signOf :: G_theory -> G_sign
signOf (G_theory lid sign _) = G_sign lid sign
-- | Get sentences of a theory
sensOf :: G_theory -> G_l_sentence_list
sensOf (G_theory lid _ sens) = G_l_sentence_list lid sens
-- | Join signature and sentence list into a theory
toG_theory :: G_sign -> G_l_sentence_list -> Maybe G_theory
toG_theory (G_sign lid1 sign1) (G_l_sentence_list lid2 sens2) = do
sens2' <- mcoerce lid1 lid2 "toG_theory" sens2
return (G_theory lid1 sign1 sens2')
-- | Join two G_l_sentence_lists
joinG_l_sentence_list :: G_l_sentence_list -> G_l_sentence_list
-> Maybe G_l_sentence_list
joinG_l_sentence_list (G_l_sentence_list lid1 sens1)
(G_l_sentence_list lid2 sens2) = do
sens2' <- mcoerce lid1 lid2 "Union of sentence lists" sens2
return (G_l_sentence_list lid1 (sens1++sens2'))
-- | Flatten a list of G_l_sentence_list's
flatG_l_sentence_list :: [G_l_sentence_list] -> Maybe G_l_sentence_list
flatG_l_sentence_list [] = Nothing
flatG_l_sentence_list (gl:gls) = foldM joinG_l_sentence_list gl gls
-- | Find all (composites of) comorphisms starting from a given logic
findComorphismPaths :: LogicGraph -> G_sublogics -> [AnyComorphism]
findComorphismPaths lg (G_sublogics lid sub) =
List.nub $ map fst $ iterateComp (0::Int) [(idc,[idc])]
where
idc = Comorphism (IdComorphism lid sub)
coMors = Map.elems $ comorphisms lg
-- compute possible compositions, but only up to depth 5
iterateComp n l = -- (l::[(AnyComorphism,[AnyComorphism])]) =
if n>5 || l==newL then newL else iterateComp (n+1) newL
where
newL = List.nub (l ++ (concat (map extend l)))
-- extend comorphism list in all directions, but no cylces
extend (coMor,comps) =
let addCoMor c =
case compComorphism coMor c of
Nothing -> Nothing
Just c1 -> Just (c1,c:comps)
in catMaybes $ map addCoMor $ filter (not . (`elem` comps)) $ coMors
------------------------------------------------------------------
-- Provers
------------------------------------------------------------------
-- | provers and consistency checkers for specific logics
data G_prover = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_prover lid (Prover sign sentence proof_tree symbol)
| forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_cons_checker lid (ConsChecker sign sentence morphism proof_tree)
------------------------------------------------------------------
-- Coercion
------------------------------------------------------------------
-- | coerce a theory into a "different" logic
coerceTheory :: forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
lid -> G_theory -> Result (sign, [Named sentence])
coerceTheory lid (G_theory lid2 sign2 sens2)
= mcoerce lid lid2 "Coercion of theories" (sign2,sens2)