Cross Reference: /hets/Logic/Grothendieck.hs
Grothendieck.hs revision bba8f93f73808355208a81d9d3446be84b37c93d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
{-# OPTIONS -fallow-overlapping-instances -fallow-incoherent-instances #-}
{- |
Module : $Header$
Copyright : (c) Till Mossakowski, and Uni Bremen 2002-2004
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : till@tzi.de
Stability : provisional
Portability : non-portable (overlapping instances, dynamics, existentials)
The Grothendieck logic is defined to be the
heterogeneous logic over the logic graph.
This will be the logic over which the data
structures and algorithms for specification in-the-large
are built.
This module heavily works with existential types, see
<http://haskell.org/hawiki/ExistentialTypes> and chapter 7 of /Heterogeneous
specification and the heterogeneous tool set/
(<http://www.tzi.de/~till/papers/habil.ps>).
References:
R. Diaconescu:
Grothendieck institutions
J. applied categorical structures 10, 2002, p. 383-402.
T. Mossakowski:
Comorphism-based Grothendieck institutions.
In K. Diks, W. Rytter (Eds.), Mathematical foundations of computer science,
LNCS 2420, pp. 593-604
T. Mossakowski:
Heterogeneous specification and the heterogeneous tool set.
Todo:
compComorphism: cancellation of id comorphisms if target sublogic is
not increased
gWeaklyAmalgamableCocone
Transportability for heterogeneous morphisms
-}
module Logic.Grothendieck where
import Logic.Logic
import Logic.Prover
import Logic.Comorphism
import Logic.Morphism
import Logic.Coerce
import Common.PrettyPrint
import Common.Lib.Pretty
import qualified Data.Graph.Inductive.Tree as Tree
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Result
import Common.DynamicUtils
import Data.Dynamic
import qualified Data.List as List
import Data.Maybe
import Control.Monad
------------------------------------------------------------------
--"Grothendieck" versions of the various parts of type class Logic
------------------------------------------------------------------
-- | Grothendieck basic specifications
data G_basic_spec = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_basic_spec lid basic_spec
instance PrettyPrint G_basic_spec where
printText0 ga (G_basic_spec _ s) = printText0 ga s
-- | Grothendieck signatures
data G_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sign lid sign
tyconG_sign :: TyCon
tyconG_sign = mkTyCon "Logic.Grothendieck.G_sign"
instance Typeable G_sign where
typeOf _ = mkTyConApp tyconG_sign []
instance Eq G_sign where
(G_sign i1 sigma1) == (G_sign i2 sigma2) =
coerceSign i1 i2 "Eq G_sign" sigma1 == Just sigma2
-- | prefer a faster subsignature test if possible
is_subgsign :: G_sign -> G_sign -> Bool
is_subgsign (G_sign i1 sigma1) (G_sign i2 sigma2) =
maybe False (is_subsig i1 sigma1) $ coerceSign i2 i1 "is_subgsign" sigma2
instance PrettyPrint G_sign where
printText0 ga (G_sign _ s) = printText0 ga s
langNameSig :: G_sign -> String
langNameSig (G_sign lid _) = language_name lid
-- | Grothendieck signature lists
data G_sign_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sign_list lid [sign]
-- | Grothendieck extended signatures
data G_ext_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_ext_sign lid sign (Set.Set symbol)
-- | Grothendieck symbols
data G_symbol = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symbol lid symbol
instance PrettyPrint G_symbol where
printText0 ga (G_symbol _ s) = printText0 ga s
instance Eq G_symbol where
(G_symbol i1 s1) == (G_symbol i2 s2) =
language_name i1 == language_name i2 && coerceSymbol i1 i2 s1 == s2
-- | Grothendieck symbol lists
data G_symb_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_items_list lid [symb_items]
instance PrettyPrint G_symb_items_list where
printText0 ga (G_symb_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
instance Eq G_symb_items_list where
(G_symb_items_list i1 s1) == (G_symb_items_list i2 s2) =
coerceSymbItemsList i1 i2 "Eq G_symb_items_list" s1 == Just s2
-- | Grothendieck symbol maps
data G_symb_map_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_map_items_list lid [symb_map_items]
instance PrettyPrint G_symb_map_items_list where
printText0 ga (G_symb_map_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
instance Eq G_symb_map_items_list where
(G_symb_map_items_list i1 s1) == (G_symb_map_items_list i2 s2) =
coerceSymbMapItemsList i1 i2 "Eq G_symb_map_items_list" s1 == Just s2
-- | Grothendieck diagrams
data G_diagram = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_diagram lid (Tree.Gr sign morphism)
-- | Grothendieck sublogics
data G_sublogics = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sublogics lid sublogics
tyconG_sublogics :: TyCon
tyconG_sublogics = mkTyCon "Logic.Grothendieck.G_sublogics"
instance Typeable G_sublogics where
typeOf _ = mkTyConApp tyconG_sublogics []
instance Show G_sublogics where
show (G_sublogics lid sub) = case sublogic_names lid sub of
[] -> error "show G_sublogics"
h : _ -> show lid ++ "." ++ h
instance Eq G_sublogics where
(G_sublogics lid1 l1) == (G_sublogics lid2 l2) =
language_name lid1 == language_name lid2
&& coerceSublogic lid1 lid2 l1 == l2
instance Ord G_sublogics where
compare (G_sublogics lid1 l1) (G_sublogics lid2 l2) =
compare (coerceSublogic lid1 lid2 l1) l2
-- | Homogeneous Grothendieck signature morphisms
data G_morphism = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_morphism lid morphism
----------------------------------------------------------------
-- Existential types for the logic graph
----------------------------------------------------------------
--- Comorphisms ----
-- | Existential type for comorphisms
data AnyComorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
Comorphism cid
instance Eq AnyComorphism where
Comorphism cid1 == Comorphism cid2 =
constituents cid1 == constituents cid2
-- need to be refined, using comorphism translations !!!
instance Show AnyComorphism where
show (Comorphism cid) =
language_name cid
++" : "++language_name (sourceLogic cid)
++" -> "++language_name (targetLogic cid)
tyconAnyComorphism :: TyCon
tyconAnyComorphism = mkTyCon "Logic.Grothendieck.AnyComorphism"
instance Typeable AnyComorphism where
typeOf _ = mkTyConApp tyconAnyComorphism []
-- | compute the identity comorphism for a logic
idComorphism :: AnyLogic -> AnyComorphism
idComorphism (Logic lid) = Comorphism (IdComorphism lid (top_sublogic lid))
-- | Test whether a comporphism is the identity
isIdComorphism :: AnyComorphism -> Bool
isIdComorphism (Comorphism cid) =
constituents cid == []
-- | Compose comorphisms
compComorphism :: Monad m => AnyComorphism -> AnyComorphism -> m AnyComorphism
compComorphism (Comorphism cid1) (Comorphism cid2) =
let l1 = targetLogic cid1
l2 = sourceLogic cid2 in
if language_name l1 == language_name l2 then
if coerceSublogic l1 l2 (targetSublogic cid1) <= sourceSublogic cid2
then {- case (isIdComorphism cm1,isIdComorphism cm2) of
(True,_) -> return cm2
(_,True) -> return cm1
_ -> -} return $ Comorphism (CompComorphism cid1 cid2)
else fail ("Sublogic mismatch in composition of "++language_name cid1++
" and "++language_name cid2)
else fail ("Logic mismatch in composition of "++language_name cid1++
" and "++language_name cid2)
--- Morphisms ---
-- | Existential type for morphisms
data AnyMorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Morphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
Morphism cid
{-
instance Eq AnyMorphism where
Morphism cid1 == Morphism cid2 =
constituents cid1 == constituents cid2
-- need to be refined, using morphism translations !!!
instance Show AnyMorphism where
show (Morphism cid) =
language_name cid
++" : "++language_name (sourceLogic cid)
++" -> "++language_name (targetLogic cid)
-}
tyconAnyMorphism :: TyCon
tyconAnyMorphism = mkTyCon "Logic.Grothendieck.AnyMorphism"
instance Typeable AnyMorphism where
typeOf _ = mkTyConApp tyconAnyMorphism []
-- | Logic graph
data LogicGraph = LogicGraph {
logics :: Map.Map String AnyLogic,
comorphisms :: Map.Map String AnyComorphism,
inclusions :: Map.Map (String,String) AnyComorphism,
unions :: Map.Map (String,String) (AnyComorphism,AnyComorphism)
}
emptyLogicGraph :: LogicGraph
emptyLogicGraph = LogicGraph Map.empty Map.empty Map.empty Map.empty
-- | find a logic in a logic graph
lookupLogic :: Monad m => String -> String -> LogicGraph -> m AnyLogic
lookupLogic error_prefix logname logicGraph =
case Map.lookup logname (logics logicGraph) of
Nothing -> fail (error_prefix++" in LogicGraph logic \""
++logname++"\" unknown")
Just lid -> return lid
-- | union to two logics
logicUnion :: LogicGraph -> AnyLogic -> AnyLogic -> Result (AnyComorphism,AnyComorphism)
logicUnion lg l1@(Logic lid1) l2@(Logic lid2) =
case logicInclusion lg l1 l2 of
Result _ (Just c) -> return (c,idComorphism l2)
_ -> case logicInclusion lg l2 l1 of
Result _ (Just c) -> return (idComorphism l1,c)
_ -> case Map.lookup (ln1,ln2) (unions lg) of
Just u -> return u
Nothing -> case Map.lookup (ln2,ln1) (unions lg) of
Just (c2,c1) -> return (c1,c2)
Nothing -> fail ("Union of logics "++ln1++" and "++ln2++" does not exist")
where ln1 = language_name lid1
ln2 = language_name lid2
-- | split list at separator elements, avoid empty sublists
splitBy :: Eq a => a -> [a] -> [[a]]
splitBy x xs = let (l, r) = break (==x) xs in
(if null l then [] else [l]) ++ (if null r then [] else splitBy x $ tail r)
-- suffix "By" usually indicates a (a -> a -> Bool) argument instead of Eq
-- | find a comorphism in a logic graph
lookupComorphism :: Monad m => String -> LogicGraph -> m AnyComorphism
lookupComorphism coname logicGraph = do
let nameList = splitBy ';' coname
cs <- sequence $ map lookupN nameList
case cs of
c:cs1 -> foldM compComorphism c cs1
_ -> fail ("Illgegal comorphism name: "++coname)
where
lookupN name =
case name of
'i':'d':'_':logic -> do
let mainLogic = takeWhile (/= '.') logic
l <- maybe (fail ("Cannot find Logic "++mainLogic)) return
$ Map.lookup mainLogic (logics logicGraph)
return $ idComorphism l
_ -> maybe (fail ("Cannot find logic comorphism "++name)) return
$ Map.lookup name (comorphisms logicGraph)
------------------------------------------------------------------
-- The Grothendieck signature category
------------------------------------------------------------------
-- | Grothendieck signature morphisms
data GMorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
GMorphism cid sign1 morphism2
instance Eq GMorphism where
GMorphism cid1 sigma1 mor1 == GMorphism cid2 sigma2 mor2
= Comorphism cid1 == Comorphism cid2
&& coerceSign (sourceLogic cid1) (sourceLogic cid2)
"Eq GMorphism.coerceSign" sigma1 == Just sigma2
&& coerceMorphism (targetLogic cid1) (targetLogic cid2)
"Eq GMorphism.coerceMorphism" mor1 == Just mor2
isHomogeneous :: GMorphism -> Bool
isHomogeneous (GMorphism cid _ _) =
isIdComorphism (Comorphism cid)
data Grothendieck = Grothendieck deriving Show
instance Language Grothendieck
instance PrettyPrint GMorphism where
printText0 ga (GMorphism cid s m) =
ptext (show cid)
<+> -- ptext ":" <+> ptext (show (sourceLogic cid)) <+>
-- ptext "->" <+> ptext (show (targetLogic cid)) <+>
ptext "(" <+> printText0 ga s <+> ptext ")"
$$
printText0 ga m
instance Category Grothendieck G_sign GMorphism where
ide _ (G_sign lid sigma) =
GMorphism (IdComorphism lid (top_sublogic lid)) sigma (ide lid sigma)
comp _
(GMorphism r1 sigma1 mor1)
(GMorphism r2 _sigma2 mor2) =
do let lid2 = targetLogic r1
lid3 = sourceLogic r2
lid4 = targetLogic r2
mor1' <- coerceMorphism lid2 lid3 "Grothendieck.comp" mor1
mor1'' <- map_morphism r2 mor1'
mor <- comp lid4 mor1'' mor2
return (GMorphism (CompComorphism r1 r2) sigma1 mor)
dom _ (GMorphism r sigma _mor) =
G_sign (sourceLogic r) sigma
cod _ (GMorphism r _sigma mor) =
G_sign lid2 (cod lid2 mor)
where lid2 = targetLogic r
legal_obj _ (G_sign lid sigma) = legal_obj lid sigma
legal_mor _ (GMorphism r sigma mor) =
legal_mor lid2 mor &&
case maybeResult $ map_sign r sigma of
Just (sigma',_) -> sigma' == cod lid2 mor
Nothing -> False
where lid2 = targetLogic r
-- | Embedding of homogeneous signature morphisms as Grothendieck sig mors
gEmbed :: G_morphism -> GMorphism
gEmbed (G_morphism lid mor) =
GMorphism (IdComorphism lid (top_sublogic lid)) (dom lid mor) mor
-- | Embedding of comorphisms as Grothendieck sig mors
gEmbedComorphism :: AnyComorphism -> G_sign -> Result GMorphism
gEmbedComorphism (Comorphism cid) (G_sign lid sig) = do
sig' <- coerceSign lid (sourceLogic cid) "gEmbedComorphism" sig
(sigTar,_) <- map_sign cid sig'
let lidTar = targetLogic cid
return (GMorphism cid sig'(ide lidTar sigTar))
-- | heterogeneous union of two Grothendieck signatures
gsigUnion :: LogicGraph -> G_sign -> G_sign -> Result G_sign
gsigUnion lg gsig1@(G_sign lid1 sigma1) gsig2@(G_sign lid2 sigma2) =
if language_name lid1 == language_name lid2
then homogeneousGsigUnion gsig1 gsig2
else do
(Comorphism cid1,Comorphism cid2) <- logicUnion lg (Logic lid1) (Logic lid2)
let lidS1 = sourceLogic cid1
lidS2 = sourceLogic cid2
lidT1 = targetLogic cid1
lidT2 = targetLogic cid2
sigma1' <- coerceSign lid1 lidS1 "Union of signaturesa" sigma1
sigma2' <- coerceSign lid2 lidS2 "Union of signaturesb" sigma2
(sigma1'',_) <- map_sign cid1 sigma1' -- where to put axioms???
(sigma2'',_) <- map_sign cid2 sigma2' -- where to put axioms???
sigma2''' <- coerceSign lidT2 lidT1 "Union of signaturesc" sigma2''
sigma3 <- signature_union lidT1 sigma1'' sigma2'''
return (G_sign lidT1 sigma3)
-- | homogeneous Union of two Grothendieck signatures
homogeneousGsigUnion :: G_sign -> G_sign -> Result G_sign
homogeneousGsigUnion (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do
sigma2' <- coerceSign lid2 lid1 "Union of signaturesd" sigma2
sigma3 <- signature_union lid1 sigma1 sigma2'
return (G_sign lid1 sigma3)
-- | union of a list of Grothendieck signatures
gsigManyUnion :: LogicGraph -> [G_sign] -> Result G_sign
gsigManyUnion _ [] =
fail "union of emtpy list of signatures"
gsigManyUnion lg (gsigma : gsigmas) =
foldM (gsigUnion lg) gsigma gsigmas
-- | homogeneous Union of a list of morphisms
homogeneousMorManyUnion :: [G_morphism] -> Result G_morphism
homogeneousMorManyUnion [] =
fail "homogeneous union of emtpy list of morphisms"
homogeneousMorManyUnion (gmor : gmors) =
foldM ( \ (G_morphism lid2 mor2) (G_morphism lid1 mor1) -> do
mor1' <- coerceMorphism lid1 lid2 "homogeneousMorManyUnion" mor1
mor <- morphism_union lid2 mor1' mor2
return (G_morphism lid2 mor)) gmor gmors
-- | inclusion between two logics
logicInclusion :: LogicGraph -> AnyLogic -> AnyLogic -> Result AnyComorphism
logicInclusion logicGraph l1@(Logic lid1) (Logic lid2) =
let ln1 = language_name lid1
ln2 = language_name lid2 in
if ln1==ln2 then
return (idComorphism l1)
else case Map.lookup (ln1,ln2) (inclusions logicGraph) of
Just (Comorphism i) ->
return (Comorphism i)
Nothing ->
fail ("No inclusion from "++ln1++" to "++ln2++" found")
-- | inclusion morphism between two Grothendieck signatures
ginclusion :: LogicGraph -> G_sign -> G_sign -> Result GMorphism
ginclusion logicGraph (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do
Comorphism i <- logicInclusion logicGraph (Logic lid1) (Logic lid2)
sigma1' <- coerceSign lid1 (sourceLogic i) "Inclusion of signatures" sigma1
(sigma1'',_) <- map_sign i sigma1'
sigma2' <- coerceSign lid2 (targetLogic i) "Inclusion of signatures" sigma2
mor <- inclusion (targetLogic i) sigma1'' sigma2'
return (GMorphism i sigma1' mor)
-- | Composition of two Grothendieck signature morphisms
-- | with itermediate inclusion
compInclusion :: LogicGraph -> GMorphism -> GMorphism -> Result GMorphism
compInclusion lg mor1 mor2 = do
incl <- ginclusion lg (cod Grothendieck mor1) (dom Grothendieck mor2)
mor <- comp Grothendieck mor1 incl
comp Grothendieck mor mor2
-- | Composition of two Grothendieck signature morphisms
-- | with itermediate homogeneous inclusion
compHomInclusion :: GMorphism -> GMorphism -> Result GMorphism
compHomInclusion mor1 mor2 = compInclusion emptyLogicGraph mor1 mor2
-- | Find all (composites of) comorphisms starting from a given logic
findComorphismPaths :: LogicGraph -> G_sublogics -> [AnyComorphism]
findComorphismPaths lg (G_sublogics lid sub) =
List.nub $ map fst $ iterateComp (0::Int) [(idc,[idc])]
where
idc = Comorphism (IdComorphism lid sub)
coMors = Map.elems $ comorphisms lg
-- compute possible compositions, but only up to depth 3
iterateComp n l = -- (l::[(AnyComorphism,[AnyComorphism])]) =
if n>3 || l==newL then newL else iterateComp (n+1) newL
where
newL = List.nub (l ++ (concat (map extend l)))
-- extend comorphism list in all directions, but no cylces
extend (coMor,comps) =
let addCoMor c =
case compComorphism coMor c of
Nothing -> Nothing
Just c1 -> Just (c1,c:comps)
in catMaybes $ map addCoMor $ filter (not . (`elem` comps)) $ coMors
-- | check transpotability of Grothendieck signature morphisms
-- | (currently returns false for heterogeneous morphisms)
isTransportable :: GMorphism -> Bool
isTransportable (GMorphism cid _ mor) =
isIdComorphism (Comorphism cid) && is_transportable (targetLogic cid) mor
------------------------------------------------------------------
-- Provers
------------------------------------------------------------------
-- | provers and consistency checkers for specific logics
data G_prover = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_prover lid (Prover sign sentence proof_tree)
coerceProver ::
(Logic lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1,
Logic lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2,
Monad m) => lid1 -> lid2 -> String -> Prover sign1 sentence1 proof_tree1
-> m (Prover sign2 sentence2 proof_tree2)
coerceProver l1 l2 msg m1 = primCoerce l1 l2 msg m1
data G_cons_checker = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_cons_checker lid (ConsChecker sign sentence morphism proof_tree)
coerceConsChecker ::
(Logic lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1,
Logic lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2,
Monad m) => lid1 -> lid2 -> String
-> ConsChecker sign1 sentence1 morphism1 proof_tree1
-> m (ConsChecker sign2 sentence2 morphism2 proof_tree2)
coerceConsChecker l1 l2 msg m1 = primCoerce l1 l2 msg m1