Grothendieck.hs revision 656f17ae9b7610ff2de1b6eedeeadea0c3bcdc8d
{-# LANGUAGE ExistentialQuantification, MultiParamTypeClasses
, DeriveDataTypeable, GeneralizedNewtypeDeriving #-}
{- |
Module : $Header$
Description : Grothendieck logic (flattening of logic graph to a single logic)
Copyright : (c) Till Mossakowski, and Uni Bremen 2002-2006
License : GPLv2 or higher, see LICENSE.txt
Maintainer : till@informatik.uni-bremen.de
Stability : provisional
Portability : non-portable (overlapping instances, dynamics, existentials)
Grothendieck logic (flattening of logic graph to a single logic)
The Grothendieck logic is defined to be the
heterogeneous logic over the logic graph.
This will be the logic over which the data
structures and algorithms for specification in-the-large
are built.
This module heavily works with existential types, see
<http://haskell.org/hawiki/ExistentialTypes> and chapter 7 of /Heterogeneous
specification and the heterogeneous tool set/
(<http://www.informatik.uni-bremen.de/~till/papers/habil.ps>).
References:
R. Diaconescu:
Grothendieck institutions
J. applied categorical structures 10, 2002, p. 383-402.
T. Mossakowski:
Comorphism-based Grothendieck institutions.
In K. Diks, W. Rytter (Eds.), Mathematical foundations of computer science,
LNCS 2420, pp. 593-604
T. Mossakowski:
Heterogeneous specification and the heterogeneous tool set.
-}
module Logic.Grothendieck
( G_basic_spec (..)
, G_sign (..)
, SigId (..)
, startSigId
, isHomSubGsign
, isSubGsign
, logicOfGsign
, symsOfGsign
, G_symbolmap (..)
, G_mapofsymbol (..)
, G_symbol (..)
, G_symb_items_list (..)
, G_symb_map_items_list (..)
, G_sublogics (..)
, isProperSublogic
, joinSublogics
, G_morphism (..)
, MorId (..)
, startMorId
, mkG_morphism
, lessSublogicComor
, LogicGraph (..)
, setCurLogic
, emptyLogicGraph
, lookupLogic
, lookupCurrentLogic
, lookupCompComorphism
, lookupComorphism
, lookupModification
, GMorphism (..)
, isHomogeneous
, Grothendieck (..)
, gEmbed
, gEmbed2
, gEmbedComorphism
, homGsigDiff
, gsigUnion
, gsigManyUnion
, homogeneousMorManyUnion
, logicInclusion
, logicUnion
, updateMorIndex
, toG_morphism
, gSigCoerce
, ginclusion
, compInclusion
, findComorphismPaths
, findComorphism
, isTransportable
, Square (..)
, LaxTriangle (..)
, mkIdSquare
, mkDefSquare
, mirrorSquare
, lookupSquare
) where
import Logic.Coerce
import Logic.Comorphism
import Logic.ExtSign
import Logic.Logic
import Logic.Modification
import Logic.Morphism
import ATerm.Lib
import Common.Doc
import Common.DocUtils
import Common.ExtSign
import Common.Id
import Common.Lexer
import Common.Parsec
import Common.Result
import Common.Token
import Common.Utils
import Control.Monad (foldM)
import Data.Maybe (mapMaybe)
import Data.Typeable
import qualified Data.Map as Map
import qualified Data.Set as Set
import Text.ParserCombinators.Parsec (Parser, parse, eof, (<|>))
-- for looking up modifications
-- * \"Grothendieck\" versions of the various parts of type class Logic
-- | Grothendieck basic specifications
data G_basic_spec = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_basic_spec lid basic_spec
deriving Typeable
instance Show G_basic_spec where
show (G_basic_spec _ s) = show s
instance Pretty G_basic_spec where
pretty (G_basic_spec _ s) = pretty s
instance GetRange G_basic_spec
-- dummy instances for development graphs
instance Ord G_basic_spec where
compare _ _ = EQ
instance Eq G_basic_spec where
_ == _ = True
-- | index for signatures
newtype SigId = SigId Int
deriving (Typeable, Show, Eq, Ord, Enum, ShATermConvertible)
startSigId :: SigId
startSigId = SigId 0
{- | Grothendieck signatures with an lookup index. Zero indices
indicate unknown ones. It would be nice to have special (may be
negative) indices for empty signatures (one for every logic). -}
data G_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree => G_sign
{ gSignLogic :: lid
, gSign :: ExtSign sign symbol
, gSignSelfIdx :: SigId -- ^ index to lookup this 'G_sign' in sign map
} deriving Typeable
instance Eq G_sign where
a == b = compare a b == EQ
instance Ord G_sign where
compare (G_sign l1 sigma1 s1) (G_sign l2 sigma2 s2) =
if s1 > startSigId && s2 > startSigId && s1 == s2 then EQ else
case compare (Logic l1) $ Logic l2 of
EQ -> compare (coerceSign l1 l2 "Eq G_sign" sigma1) $ Just sigma2
r -> r
-- | prefer a faster subsignature test if possible
isHomSubGsign :: G_sign -> G_sign -> Bool
isHomSubGsign (G_sign l1 sigma1 s1) (G_sign l2 sigma2 s2) =
(s1 > startSigId && s2 > startSigId && s1 == s2) ||
maybe False (ext_is_subsig l1 sigma1)
(coerceSign l2 l1 "isHomSubGsign" sigma2)
isSubGsign :: LogicGraph -> G_sign -> G_sign -> Bool
isSubGsign lg (G_sign lid1 (ExtSign sigma1 _) _)
(G_sign lid2 (ExtSign sigma2 _) _) =
Just True ==
do Comorphism cid <- resultToMaybe $
logicInclusion lg (Logic lid1) (Logic lid2)
sigma1' <- coercePlainSign lid1 (sourceLogic cid)
"Grothendieck.isSubGsign: cannot happen" sigma1
sigma2' <- coercePlainSign lid2 (targetLogic cid)
"Grothendieck.isSubGsign: cannot happen" sigma2
sigma1t <- resultToMaybe $ map_sign cid sigma1'
return $ is_subsig (targetLogic cid) (fst sigma1t) sigma2'
instance Show G_sign where
show (G_sign _ s _) = show s
instance Pretty G_sign where
pretty (G_sign _ (ExtSign s _) _) = pretty s
logicOfGsign :: G_sign -> AnyLogic
logicOfGsign (G_sign lid _ _) = Logic lid
symsOfGsign :: G_sign -> Set.Set G_symbol
symsOfGsign (G_sign lid (ExtSign sgn _) _) = Set.map (G_symbol lid)
$ symset_of lid sgn
-- | Grothendieck maps with symbol as keys
data G_symbolmap a = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symbolmap lid (Map.Map symbol a)
deriving Typeable
instance Show a => Show (G_symbolmap a) where
show (G_symbolmap _ sm) = show sm
instance (Typeable a, Ord a) => Eq (G_symbolmap a) where
a == b = compare a b == EQ
instance (Typeable a, Ord a) => Ord (G_symbolmap a) where
compare (G_symbolmap l1 sm1) (G_symbolmap l2 sm2) =
case compare (Logic l1) $ Logic l2 of
EQ -> compare (coerceSymbolmap l1 l2 sm1) sm2
r -> r
-- | Grothendieck maps with symbol as values
data G_mapofsymbol a = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_mapofsymbol lid (Map.Map a symbol)
deriving Typeable
instance Show a => Show (G_mapofsymbol a) where
show (G_mapofsymbol _ sm) = show sm
instance (Typeable a, Ord a) => Eq (G_mapofsymbol a) where
a == b = compare a b == EQ
instance (Typeable a, Ord a) => Ord (G_mapofsymbol a) where
compare (G_mapofsymbol l1 sm1) (G_mapofsymbol l2 sm2) =
case compare (Logic l1) $ Logic l2 of
EQ -> compare (coerceMapofsymbol l1 l2 sm1) sm2
r -> r
-- | Grothendieck symbols
data G_symbol = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symbol lid symbol
deriving Typeable
instance GetRange G_symbol where
getRange (G_symbol _ s) = getRange s
rangeSpan (G_symbol _ s) = rangeSpan s
instance Show G_symbol where
show (G_symbol _ s) = show s
instance Pretty G_symbol where
pretty (G_symbol _ s) = pretty s
instance Eq G_symbol where
a == b = compare a b == EQ
instance Ord G_symbol where
compare (G_symbol l1 s1) (G_symbol l2 s2) =
case compare (Logic l1) $ Logic l2 of
EQ -> compare (coerceSymbol l1 l2 s1) s2
r -> r
-- | Grothendieck symbol lists
data G_symb_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_items_list lid [symb_items]
deriving Typeable
instance GetRange G_symb_items_list
instance Show G_symb_items_list where
show (G_symb_items_list _ l) = show l
instance Pretty G_symb_items_list where
pretty (G_symb_items_list _ l) = ppWithCommas l
instance Eq G_symb_items_list where
(G_symb_items_list i1 s1) == (G_symb_items_list i2 s2) =
coerceSymbItemsList i1 i2 "Eq G_symb_items_list" s1 == Just s2
-- | Grothendieck symbol maps
data G_symb_map_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_map_items_list lid [symb_map_items]
deriving Typeable
instance GetRange G_symb_map_items_list
instance Show G_symb_map_items_list where
show (G_symb_map_items_list _ l) = show l
instance Pretty G_symb_map_items_list where
pretty (G_symb_map_items_list _ l) = ppWithCommas l
instance Eq G_symb_map_items_list where
(G_symb_map_items_list i1 s1) == (G_symb_map_items_list i2 s2) =
coerceSymbMapItemsList i1 i2 "Eq G_symb_map_items_list" s1 == Just s2
-- | Grothendieck sublogics
data G_sublogics = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sublogics lid sublogics
deriving Typeable
instance Show G_sublogics where
show (G_sublogics lid sub) = language_name lid ++ case sublogicName sub of
[] -> ""
h -> '.' : h
instance Eq G_sublogics where
g1 == g2 = compare g1 g2 == EQ
instance Ord G_sublogics where
compare (G_sublogics lid1 l1) (G_sublogics lid2 l2) =
case compare (Logic lid1) $ Logic lid2 of
EQ -> compare (forceCoerceSublogic lid1 lid2 l1) l2
r -> r
isProperSublogic :: G_sublogics -> G_sublogics -> Bool
isProperSublogic a@(G_sublogics lid1 l1) b@(G_sublogics lid2 l2) =
isSubElem (forceCoerceSublogic lid1 lid2 l1) l2 && a /= b
joinSublogics :: G_sublogics -> G_sublogics -> Maybe G_sublogics
joinSublogics (G_sublogics lid1 l1) (G_sublogics lid2 l2) =
case coerceSublogic lid1 lid2 "coerce Sublogic" l1 of
Just sl -> Just (G_sublogics lid2 (join sl l2))
Nothing -> Nothing
-- | index for morphisms
newtype MorId = MorId Int
deriving (Typeable, Show, Eq, Ord, Enum, ShATermConvertible)
startMorId :: MorId
startMorId = MorId 0
{- | Homogeneous Grothendieck signature morphisms with indices. For
the domain index it would be nice it showed also the emptiness. -}
data G_morphism = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree => G_morphism
{ gMorphismLogic :: lid
, gMorphism :: morphism
, gMorphismSelfIdx :: MorId -- ^ lookup index in morphism map
} deriving Typeable
instance Show G_morphism where
show (G_morphism _ m _) = show m
instance Pretty G_morphism where
pretty (G_morphism _ m _) = pretty m
mkG_morphism :: forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree
=> lid -> morphism -> G_morphism
mkG_morphism l m = G_morphism l m startMorId
-- | check if sublogic fits for comorphism
lessSublogicComor :: G_sublogics -> AnyComorphism -> Bool
lessSublogicComor (G_sublogics lid1 sub1) (Comorphism cid) =
let lid2 = sourceLogic cid
in Logic lid2 == Logic lid1
&& isSubElem (forceCoerceSublogic lid1 lid2 sub1) (sourceSublogic cid)
-- | Logic graph
data LogicGraph = LogicGraph
{ logics :: Map.Map String AnyLogic
, currentLogic :: String
, comorphisms :: Map.Map String AnyComorphism
, inclusions :: Map.Map (String, String) AnyComorphism
, unions :: Map.Map (String, String) (AnyComorphism, AnyComorphism)
, morphisms :: Map.Map String AnyMorphism
, modifications :: Map.Map String AnyModification
, squares :: Map.Map (AnyComorphism, AnyComorphism) [Square]
, qTATranslations :: Map.Map String AnyComorphism
} deriving Show
emptyLogicGraph :: LogicGraph
emptyLogicGraph = LogicGraph
{ logics = Map.empty
, currentLogic = "CASL"
, comorphisms = Map.empty
, inclusions = Map.empty
, unions = Map.empty
, morphisms = Map.empty
, modifications = Map.empty
, squares = Map.empty
, qTATranslations = Map.empty }
setCurLogic :: String -> LogicGraph -> LogicGraph
setCurLogic s lg = lg { currentLogic = s }
instance Pretty LogicGraph where
pretty lg = text ("current logic is: " ++ currentLogic lg)
$+$ text "all logics:"
$+$ sepByCommas (map text $ Map.keys $ logics lg)
$+$ text "comorphism inclusions:"
$+$ vcat (map pretty $ Map.elems $ inclusions lg)
$+$ text "all comorphisms:"
$+$ vcat (map pretty $ Map.elems $ comorphisms lg)
-- | find a logic in a logic graph
lookupLogic :: Monad m => String -> String -> LogicGraph -> m AnyLogic
lookupLogic error_prefix logname logicGraph =
case Map.lookup logname $ logics logicGraph of
Nothing -> fail $ error_prefix ++ " in LogicGraph logic \""
++ logname ++ "\" unknown"
Just lid -> return lid
lookupCurrentLogic :: Monad m => String -> LogicGraph -> m AnyLogic
lookupCurrentLogic msg lg = lookupLogic msg (currentLogic lg) lg
-- | union to two logics
logicUnion :: LogicGraph -> AnyLogic -> AnyLogic
-> Result (AnyComorphism, AnyComorphism)
logicUnion lg l1@(Logic lid1) l2@(Logic lid2) =
case logicInclusion lg l1 l2 of
Result _ (Just c) -> return (c, idComorphism l2)
_ -> case logicInclusion lg l2 l1 of
Result _ (Just c) -> return (idComorphism l1, c)
_ -> case Map.lookup (ln1, ln2) (unions lg) of
Just u -> return u
Nothing -> case Map.lookup (ln2, ln1) (unions lg) of
Just (c2, c1) -> return (c1, c2)
Nothing -> fail $ "Union of logics " ++ ln1 ++
" and " ++ ln2 ++ " does not exist"
where ln1 = language_name lid1
ln2 = language_name lid2
-- | find a comorphism composition in a logic graph
lookupCompComorphism :: Monad m => [String] -> LogicGraph -> m AnyComorphism
lookupCompComorphism nameList logicGraph = do
cs <- mapM lookupN nameList
case cs of
c : cs1 -> foldM compComorphism c cs1
_ -> fail "Illegal empty comorphism composition"
where
lookupN name =
case name of
'i' : 'd' : '_' : logic -> do
let (mainLogic, subLogicD) = span (/= '.') logic
-- subLogicD will begin with a . which has to be removed
msublogic = if null subLogicD
then Nothing
else Just $ tail subLogicD
Logic lid <- maybe (fail ("Cannot find Logic " ++ mainLogic)) return
$ Map.lookup mainLogic (logics logicGraph)
case maybe id (\ subl -> filter (\ s -> subl == sublogicName s))
msublogic
$ all_sublogics lid of
[] -> fail $ maybe "missing sublogic"
("unknown sublogic name " ++) msublogic
s : _ -> return $ Comorphism $ mkIdComorphism lid s
_ -> maybe (fail ("Cannot find logic comorphism " ++ name)) return
$ Map.lookup name (comorphisms logicGraph)
-- | find a comorphism in a logic graph
lookupComorphism :: Monad m => String -> LogicGraph -> m AnyComorphism
lookupComorphism = lookupCompComorphism . splitOn ';'
-- | find a modification in a logic graph
lookupModification :: (Monad m) => String -> LogicGraph -> m AnyModification
lookupModification input lG
= case parse (parseModif lG << eof) "" input of
Left err -> fail $ show err
Right x -> x
parseModif :: (Monad m) => LogicGraph -> Parser (m AnyModification)
parseModif lG = do
(xs, _) <- separatedBy (vertcomp lG) crossT
let r = do
y <- sequence xs
case y of
m : ms -> return $ foldM horCompModification m ms
_ -> Nothing
case r of
Nothing -> fail "Illegal empty horizontal composition"
Just m -> return m
vertcomp :: (Monad m) => LogicGraph -> Parser (m AnyModification)
vertcomp lG = do
(xs, _) <- separatedBy (pm lG) semiT
let r = do
y <- sequence xs
case y of
m : ms -> return $ foldM vertCompModification m ms
_ -> Nothing
-- r has type Maybe (m AnyModification)
case r of
Nothing -> fail "Illegal empty vertical composition"
Just m -> return m
pm :: (Monad m) => LogicGraph -> Parser (m AnyModification)
pm lG = parseName lG <|> bracks lG
bracks :: (Monad m) => LogicGraph -> Parser (m AnyModification)
bracks lG = do
oParenT
modif <- parseModif lG
cParenT
return modif
parseIdentity :: (Monad m) => LogicGraph -> Parser (m AnyModification)
parseIdentity lG = do
tryString "id_"
tok <- simpleId
let name = tokStr tok
case Map.lookup name (comorphisms lG) of
Nothing -> fail $ "Cannot find comorphism" ++ name
Just x -> return $ return $ idModification x
parseName :: (Monad m) => LogicGraph -> Parser (m AnyModification)
parseName lG = parseIdentity lG <|> do
tok <- simpleId
let name = tokStr tok
case Map.lookup name (modifications lG) of
Nothing -> fail $ "Cannot find modification" ++ name
Just x -> return $ return x
-- * The Grothendieck signature category
-- | Grothendieck signature morphisms with indices
data GMorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 => GMorphism
{ gMorphismComor :: cid
, gMorphismSign :: ExtSign sign1 symbol1
, gMorphismSignIdx :: SigId -- ^ 'G_sign' index of source signature
, gMorphismMor :: morphism2
, gMorphismMorIdx :: MorId -- ^ `G_morphism index of target morphism
} deriving Typeable
instance Eq GMorphism where
a == b = compare a b == EQ
instance Ord GMorphism where
compare (GMorphism cid1 sigma1 in1 mor1 in1')
(GMorphism cid2 sigma2 in2 mor2 in2') =
case compare (Comorphism cid1, G_sign (sourceLogic cid1) sigma1 in1)
(Comorphism cid2, G_sign (sourceLogic cid2) sigma2 in2) of
EQ -> if in1' > startMorId && in2' > startMorId && in1' == in2'
then EQ else
compare (coerceMorphism (targetLogic cid1) (targetLogic cid2)
"Ord GMorphism.coerceMorphism" mor1) (Just mor2)
-- this coersion will succeed, because cid1 and cid2 are equal
r -> r
isHomogeneous :: GMorphism -> Bool
isHomogeneous (GMorphism cid _ _ _ _) =
isIdComorphism (Comorphism cid)
data Grothendieck = Grothendieck deriving (Typeable, Show)
instance Language Grothendieck
instance Show GMorphism where
show (GMorphism cid s _ m _) =
show (Comorphism cid) ++ "(" ++ show s ++ ")" ++ show m
instance Pretty GMorphism where
pretty (GMorphism cid (ExtSign s _) _ m _) = let c = Comorphism cid in fsep
[ text $ show c
, if isIdComorphism c then empty else specBraces $ space <> pretty s
, pretty m ]
-- signature category of the Grothendieck institution
instance Category G_sign GMorphism where
ide (G_sign lid sigma@(ExtSign s _) ind) =
GMorphism (mkIdComorphism lid (top_sublogic lid))
sigma ind (ide s) startMorId
-- composition of Grothendieck signature morphisms
composeMorphisms (GMorphism r1 sigma1 ind1 mor1 _)
(GMorphism r2 _sigma2 _ mor2 _) =
do let lid1 = sourceLogic r1
lid2 = targetLogic r1
lid3 = sourceLogic r2
lid4 = targetLogic r2
-- if the second comorphism is the identity then simplify immediately
if isIdComorphism (Comorphism r2) then do
mor2' <- coerceMorphism lid4 lid2 "Grothendieck.comp" mor2
mor' <- composeMorphisms mor1 mor2'
return (GMorphism r1 sigma1 ind1 mor' startMorId)
else do
{- coercion between target of first and
source of second Grothendieck morphism -}
mor1' <- coerceMorphism lid2 lid3 "Grothendieck.comp" mor1
{- map signature morphism component of first Grothendieck morphism
along the comorphism component of the second one ... -}
mor1'' <- map_morphism r2 mor1'
{- and then compose the result with the signature morphism component
of first one -}
mor <- composeMorphisms mor1'' mor2
-- also if the first comorphism is the identity...
if isIdComorphism (Comorphism r1) &&
case coerceSublogic lid2 lid3 "Grothendieck.comp"
(targetSublogic r1) of
Just sl1 -> maybe False
(isSubElem (targetSublogic r2))
(mapSublogic r2 sl1)
_ -> False
-- ... then things simplify ...
then do
sigma1' <- coerceSign lid1 lid3 "Grothendieck.comp" sigma1
return (GMorphism r2 sigma1' ind1 mor startMorId)
else return $ GMorphism (CompComorphism r1 r2)
sigma1 ind1 mor startMorId
dom (GMorphism r sigma ind _mor _) =
G_sign (sourceLogic r) sigma ind
cod (GMorphism r (ExtSign _ _) _ mor _) =
let lid2 = targetLogic r
sig2 = cod mor
in G_sign lid2 (makeExtSign lid2 sig2) startSigId
isInclusion (GMorphism cid _ _ mor _) =
isInclusionComorphism cid && isInclusion mor
legal_mor (GMorphism r (ExtSign s _) _ mor _) = do
legal_mor mor
case maybeResult $ map_sign r s of
Just (sigma', _) -> if sigma' == cod mor then return () else
fail "legal_mor.GMorphism"
Nothing -> fail "legal_mor.GMorphism2"
-- | Embedding of homogeneous signature morphisms as Grothendieck sig mors
gEmbed2 :: G_sign -> G_morphism -> GMorphism
gEmbed2 (G_sign lid2 sig si) (G_morphism lid mor ind) =
let cid = mkIdComorphism lid (top_sublogic lid)
Just sig1 = coerceSign lid2 (sourceLogic cid) "gEmbed2" sig
in GMorphism cid sig1 si mor ind
-- | Embedding of homogeneous signature morphisms as Grothendieck sig mors
gEmbed :: G_morphism -> GMorphism
gEmbed (G_morphism lid mor ind) = let sig = dom mor in
GMorphism (mkIdComorphism lid (top_sublogic lid))
(makeExtSign lid sig) startSigId mor ind
-- | Embedding of comorphisms as Grothendieck sig mors
gEmbedComorphism :: AnyComorphism -> G_sign -> Result GMorphism
gEmbedComorphism (Comorphism cid) (G_sign lid sig ind) = do
sig'@(ExtSign s _) <- coerceSign lid (sourceLogic cid) "gEmbedComorphism" sig
(sigTar, _) <- map_sign cid s
return (GMorphism cid sig' ind (ide sigTar) startMorId)
-- | heterogeneous union of two Grothendieck signatures
gsigUnion :: LogicGraph -> G_sign -> G_sign -> Result G_sign
gsigUnion lg gsig1@(G_sign lid1 (ExtSign sigma1 _) _)
gsig2@(G_sign lid2 (ExtSign sigma2 _) _) =
if Logic lid1 == Logic lid2
then homogeneousGsigUnion gsig1 gsig2
else do
(Comorphism cid1, Comorphism cid2) <-
logicUnion lg (Logic lid1) (Logic lid2)
let lidS1 = sourceLogic cid1
lidS2 = sourceLogic cid2
lidT1 = targetLogic cid1
lidT2 = targetLogic cid2
sigma1' <- coercePlainSign lid1 lidS1 "Union of signaturesa" sigma1
sigma2' <- coercePlainSign lid2 lidS2 "Union of signaturesb" sigma2
(sigma1'', _) <- map_sign cid1 sigma1' -- where to put axioms???
(sigma2'', _) <- map_sign cid2 sigma2' -- where to put axioms???
sigma2''' <- coercePlainSign lidT2 lidT1 "Union of signaturesc" sigma2''
sigma3 <- signature_union lidT1 sigma1'' sigma2'''
return (G_sign lidT1 (makeExtSign lidT1 sigma3) startSigId)
-- | homogeneous Union of two Grothendieck signatures
homogeneousGsigUnion :: G_sign -> G_sign -> Result G_sign
homogeneousGsigUnion (G_sign lid1 sigma1 _) (G_sign lid2 sigma2 _) = do
sigma2' <- coerceSign lid2 lid1 "Union of signatures" sigma2
sigma3 <- ext_signature_union lid1 sigma1 sigma2'
return (G_sign lid1 sigma3 startSigId)
homGsigDiff :: G_sign -> G_sign -> Result G_sign
homGsigDiff (G_sign lid1 (ExtSign s1 _) _) (G_sign lid2 (ExtSign s2 _) _) = do
s3 <- coercePlainSign lid2 lid1 "hom differerence of signatures" s2
s4 <- signatureDiff lid1 s1 s3
return $ G_sign lid1 (makeExtSign lid1 s4) startSigId
-- | union of a list of Grothendieck signatures
gsigManyUnion :: LogicGraph -> [G_sign] -> Result G_sign
gsigManyUnion _ [] =
fail "union of emtpy list of signatures"
gsigManyUnion lg (gsigma : gsigmas) =
foldM (gsigUnion lg) gsigma gsigmas
-- | homogeneous Union of a list of morphisms
homogeneousMorManyUnion :: [G_morphism] -> Result G_morphism
homogeneousMorManyUnion [] =
fail "homogeneous union of emtpy list of morphisms"
homogeneousMorManyUnion (gmor : gmors) =
foldM ( \ (G_morphism lid2 mor2 _) (G_morphism lid1 mor1 _) -> do
mor1' <- coerceMorphism lid1 lid2 "homogeneousMorManyUnion" mor1
mor <- morphism_union lid2 mor1' mor2
return (G_morphism lid2 mor startMorId)) gmor gmors
-- | inclusion between two logics
logicInclusion :: LogicGraph -> AnyLogic -> AnyLogic -> Result AnyComorphism
logicInclusion logicGraph l1@(Logic lid1) (Logic lid2) =
let ln1 = language_name lid1
ln2 = language_name lid2 in
if ln1 == ln2 then
return (idComorphism l1)
else case Map.lookup (ln1, ln2) (inclusions logicGraph) of
Just (Comorphism i) ->
return (Comorphism i)
Nothing ->
fail ("No inclusion from " ++ ln1 ++ " to " ++ ln2 ++ " found")
updateMorIndex :: MorId -> GMorphism -> GMorphism
updateMorIndex i (GMorphism cid sign si mor _) = GMorphism cid sign si mor i
toG_morphism :: GMorphism -> G_morphism
toG_morphism (GMorphism cid _ _ mor i) = G_morphism (targetLogic cid) mor i
gSigCoerce :: LogicGraph -> G_sign -> AnyLogic
-> Result (G_sign, AnyComorphism)
gSigCoerce lg g@(G_sign lid1 sigma1 _) l2@(Logic lid2) =
if Logic lid1 == Logic lid2
then return (g, idComorphism l2) else do
cmor@(Comorphism i) <- logicInclusion lg (Logic lid1) l2
ExtSign sigma1' sy <-
coerceSign lid1 (sourceLogic i) "gSigCoerce of signature" sigma1
(sigma1'', _) <- map_sign i sigma1'
sys <- return . Set.unions . map (map_symbol i sigma1') $ Set.toList sy
let lid = targetLogic i
return (G_sign lid (ExtSign sigma1'' sys) startSigId, cmor)
-- | inclusion morphism between two Grothendieck signatures
ginclusion :: LogicGraph -> G_sign -> G_sign -> Result GMorphism
ginclusion = inclusionAux True
inclusionAux :: Bool -> LogicGraph -> G_sign -> G_sign -> Result GMorphism
inclusionAux guard lg (G_sign lid1 sigma1 ind) (G_sign lid2 sigma2 _) = do
Comorphism i <- logicInclusion lg (Logic lid1) (Logic lid2)
ext1@(ExtSign sigma1' _) <-
coerceSign lid1 (sourceLogic i) "Inclusion of signatures" sigma1
(sigma1'', _) <- map_sign i sigma1'
ExtSign sigma2' _ <-
coerceSign lid2 (targetLogic i) "Inclusion of signatures" sigma2
mor <- (if guard then inclusion else subsig_inclusion)
(targetLogic i) sigma1'' sigma2'
return (GMorphism i ext1 ind mor startMorId)
genCompInclusion :: (G_sign -> G_sign -> Result GMorphism)
-> GMorphism -> GMorphism -> Result GMorphism
genCompInclusion f mor1 mor2 = do
let sigma1 = cod mor1
sigma2 = dom mor2
incl <- f sigma1 sigma2
mor <- composeMorphisms mor1 incl
composeMorphisms mor mor2
{- | Composition of two Grothendieck signature morphisms
with intermediate inclusion -}
compInclusion :: LogicGraph -> GMorphism -> GMorphism -> Result GMorphism
compInclusion = genCompInclusion . inclusionAux False
-- | Find all (composites of) comorphisms starting from a given logic
findComorphismPaths :: LogicGraph -> G_sublogics -> [AnyComorphism]
findComorphismPaths lg (G_sublogics lid sub) =
nubOrd $ map fst $ iterateComp (0 :: Int) [(idc, [idc])]
where
idc = Comorphism (mkIdComorphism lid sub)
coMors = Map.elems $ comorphisms lg
-- compute possible compositions, but only up to depth 3
iterateComp n l =
if n > 1 || l == newL then newL else iterateComp (n + 1) newL
where
newL = nubOrd $ l ++ concatMap extend l
-- extend comorphism list in all directions, but no cylces
extend (coMor, cmps) =
let addCoMor c =
case compComorphism coMor c of
Nothing -> Nothing
Just c1 -> Just (c1, c : cmps)
in mapMaybe addCoMor $ filter (not . (`elem` cmps)) coMors
-- | finds first comorphism with a matching sublogic
findComorphism :: Monad m => G_sublogics -> [AnyComorphism] -> m AnyComorphism
findComorphism _ [] = fail "No matching comorphism found"
findComorphism gsl@(G_sublogics lid sub) (Comorphism cid : rest) =
let l2 = sourceLogic cid in
if Logic lid == Logic l2
&& isSubElem (forceCoerceSublogic lid l2 sub) (sourceSublogic cid)
then return $ Comorphism cid
else findComorphism gsl rest
{- | check transportability of Grothendieck signature morphisms
(currently returns false for heterogeneous morphisms) -}
isTransportable :: GMorphism -> Bool
isTransportable (GMorphism cid _ ind1 mor ind2) =
ind1 > startSigId && ind2 > startMorId
&& isModelTransportable (Comorphism cid)
&& is_transportable (targetLogic cid) mor
-- * Lax triangles and weakly amalgamable squares of lax triangles
{- a lax triangle looks like:
laxTarget
i -------------------------------------> k
^ laxModif
| |
i ------------- > j -------------------> k
laxFst laxSnd
and I_k is quasi-semi-exact -}
data LaxTriangle = LaxTriangle {
laxModif :: AnyModification,
laxFst, laxSnd, laxTarget :: AnyComorphism
} deriving (Show, Eq, Ord)
{- a weakly amalgamable square of lax triangles
consists of two lax triangles with the same laxTarget -}
data Square = Square {
leftTriangle, rightTriangle :: LaxTriangle
} deriving (Show, Eq, Ord)
-- for deriving Eq, first equality for modifications is needed
mkIdSquare :: AnyLogic -> Square
mkIdSquare (Logic lid) = let
idCom = Comorphism (mkIdComorphism lid (top_sublogic lid))
idMod = idModification idCom
idTriangle = LaxTriangle {
laxModif = idMod,
laxFst = idCom,
laxSnd = idCom,
laxTarget = idCom}
in Square {leftTriangle = idTriangle, rightTriangle = idTriangle}
mkDefSquare :: AnyComorphism -> Square
mkDefSquare c1@(Comorphism cid1) = let
idComS = Comorphism $ mkIdComorphism (sourceLogic cid1) $
top_sublogic $ sourceLogic cid1
idComT = Comorphism $ mkIdComorphism (targetLogic cid1) $
top_sublogic $ targetLogic cid1
idMod = idModification c1
lTriangle = LaxTriangle {
laxModif = idMod,
laxFst = c1,
laxSnd = idComS,
laxTarget = c1
}
rTriangle = LaxTriangle {
laxModif = idMod,
laxFst = idComT,
laxSnd = c1,
laxTarget = c1
}
in Square {leftTriangle = lTriangle, rightTriangle = rTriangle}
mirrorSquare :: Square -> Square
mirrorSquare s = Square {
leftTriangle = rightTriangle s,
rightTriangle = leftTriangle s}
lookupSquare :: AnyComorphism -> AnyComorphism -> LogicGraph -> Result [Square]
lookupSquare com1 com2 lg = maybe (fail "lookupSquare") return $ do
sqL1 <- Map.lookup (com1, com2) $ squares lg
sqL2 <- Map.lookup (com2, com1) $ squares lg
return $ nubOrd $ sqL1 ++ map mirrorSquare sqL2
-- maybe adjusted if comparing AnyModifications change