Grothendieck.hs revision 3bb46bf92c6234bad3013b4cd13ebd164645e2a5
-- needs ghc -fglasgow-exts
{- HetCATS/Grothendieck.hs
$Id$
Till Mossakowski
The Grothendieck logic is defined to be the
heterogeneous logic over the logic graph.
This will be the logic over which the data
structures and algorithms for specification in-the-large
are built.
References:
R. Diaconescu:
Grothendieck institutions
J. applied categorical structures 10, 2002, p. 383-402.
T. Mossakowski:
Heterogeneous development graphs and heterogeneous borrowing
Fossacs 2002, LNCS 2303, p. 326-341
T. Mossakowski: Foundations of heterogeneous specification
Submitted
T. Mossakowski:
Relating CASL with Other Specification Languages:
the Institution Level
Theoretical Computer Science 286, 2002, p. 367-475
Todo:
-}
module Logic.Grothendieck where
import Logic.Logic
import Logic.Comorphism
import Common.PrettyPrint
import Common.Lib.Pretty
import qualified Common.Lib.Map as Map
import Common.PPUtils (fsep_latex, comma_latex)
import Common.Result
import Common.Id
import Common.Named
import Data.Dynamic
import Common.ATerm.Lib
------------------------------------------------------------------
--"Grothendieck" versions of the various parts of type class Logic
------------------------------------------------------------------
data G_basic_spec = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_basic_spec lid basic_spec
instance Show G_basic_spec where
show (G_basic_spec _ s) = show s
instance PrettyPrint G_basic_spec where
printText0 ga (G_basic_spec _ s) = printText0 ga s
printLatex0 ga (G_basic_spec _ s) = printLatex0 ga s
data G_sentence = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sentence lid sentence
instance Show G_sentence where
show (G_sentence _ s) = show s
data G_l_sentence_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_l_sentence lid [Named sentence]
data G_sign = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sign lid sign
instance Typeable G_sign where
typeOf _ = mkAppTy (mkTyCon "G_sign") []
instance Eq G_sign where
(G_sign i1 sigma1) == (G_sign i2 sigma2) =
coerce i1 i2 sigma1 == Just sigma2
instance Show G_sign where
show (G_sign _ s) = show s
data G_sign_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sign_list lid [sign]
data G_symbol = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symbol lid symbol
instance Show G_symbol where
show (G_symbol _ s) = show s
instance Eq G_symbol where
(G_symbol i1 s1) == (G_symbol i2 s2) =
coerce i1 i2 s1 == Just s2
data G_symb_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_items_list lid [symb_items]
instance Show G_symb_items_list where
show (G_symb_items_list _ l) = show l
instance PrettyPrint G_symb_items_list where
printText0 ga (G_symb_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
printLatex0 ga (G_symb_items_list _ l) =
fsep_latex $ punctuate comma_latex $ map (printLatex0 ga) l
instance Eq G_symb_items_list where
(G_symb_items_list i1 s1) == (G_symb_items_list i2 s2) =
coerce i1 i2 s1 == Just s2
data G_symb_map_items_list = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_symb_map_items_list lid [symb_map_items]
instance Show G_symb_map_items_list where
show (G_symb_map_items_list _ l) = show l
instance PrettyPrint G_symb_map_items_list where
printText0 ga (G_symb_map_items_list _ l) =
fsep $ punctuate comma $ map (printText0 ga) l
printLatex0 ga (G_symb_map_items_list _ l) =
fsep_latex $ punctuate comma_latex $ map (printLatex0 ga) l
instance Eq G_symb_map_items_list where
(G_symb_map_items_list i1 s1) == (G_symb_map_items_list i2 s2) =
coerce i1 i2 s1 == Just s2
data G_diagram = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_diagram lid (Diagram sign morphism)
data G_sublogics = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_sublogics lid sublogics
instance Show G_sublogics where
show (G_sublogics _ l) = show l
data G_morphism = forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
G_morphism lid morphism
instance Show G_morphism where
show (G_morphism _ l) = show l
----------------------------------------------------------------
-- Existential types for the logic graph
----------------------------------------------------------------
data AnyComorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
Comorphism cid
type LogicGraph = (Map.Map String AnyLogic,Map.Map String AnyComorphism)
lookupLogic :: String -> String -> LogicGraph -> AnyLogic
lookupLogic error_prefix logname (logics,_) =
case Map.lookup logname logics of
Nothing -> error (error_prefix++"logic "++logname++" unknown")
Just lid -> lid
lookupComorphism :: String -> String -> LogicGraph -> AnyComorphism
lookupComorphism error_prefix coname (_,comorphisms) =
case Map.lookup coname comorphisms of
Nothing -> error (error_prefix++"logic "++coname++" unknown")
Just cid -> cid
-- auxiliary existential type needed for composition of comorphisms
data AnyComorphismAux lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =
forall cid .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
ComorphismAux cid lid1 lid2
instance Typeable (lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2)
instance Show (lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2)
{- This does not work due to needed ordering:
instance Functor Set where
fmap = mapSet
instance Monad Set where
return = unitSet
m >>= k = unionManySets (setToList (fmap k m))
-}
------------------------------------------------------------------
-- The Grothendieck signature category
------------------------------------------------------------------
-- composition in diagrammatic order
compAnyComorphism :: AnyComorphism -> AnyComorphism -> Maybe AnyComorphism
compAnyComorphism = undefined
{-
(Comorphism (r1 :: Comorphism lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2))
(Comorphism (r2 :: Comorphism lid3 sublogics3 basic_spec3 sentence3
symb_items3 symb_map_items3
sign3 morphism3 symbol3 raw_symbol3 proof_tree3
lid4 sublogics4 basic_spec4 sentence4 symb_items4 symb_map_items4
sign4 morphism4 symbol4 raw_symbol4 proof_tree4)) =
do r3 <- coerce (target r1) (source r2) r2 :: Maybe(
Comorphism lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2
lid4 sublogics4 basic_spec4 sentence4 symb_items4 symb_map_items4
sign4 morphism4 symbol4 raw_symbol4 proof_tree4)
r4 <- comp_Comorphism r1 r3
return (Comorphism r4)
-}
data GMorphism = forall cid lid1 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .
Comorphism cid
lid1 sublogics1 basic_spec1 sentence1
symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid2 sublogics2 basic_spec2 sentence2
symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>
GMorphism cid sign1 morphism2
{-
| forall lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree .
Logic lid sublogics
basic_spec sentence symb_items symb_map_items
sign morphism symbol raw_symbol proof_tree =>
GMHomInclusion lid sign sign
| GMHetInclusion G_sign G_sign
-}
instance Eq GMorphism where
(GMorphism cid1 sigma1 mor1) ==
(GMorphism cid2 sigma2 mor2)
= maybe False id
(do s <- coerce cid1 cid2 "x"
return (s==Just "x")
sigma2' <- coerce (sourceLogic cid1) (sourceLogic cid2) sigma2
mor2' <- coerce (targetLogic cid1) (targetLogic cid2) mor2
return (sigma1 == sigma2' && mor1==mor2'))
data Grothendieck = Grothendieck deriving Show
instance Language Grothendieck
instance Show GMorphism where
show (GMorphism cid s m) = show cid ++ "(" ++ show s ++ ")" ++ show m
instance Category Grothendieck G_sign GMorphism where
ide _ (G_sign lid sigma) =
GMorphism (IdComorphism lid) sigma (ide lid sigma)
comp _
(GMorphism r1 sigma1 mor1)
(GMorphism r2 _sigma2 mor2) =
do let lid1 = sourceLogic r1
lid2 = targetLogic r1
lid3 = sourceLogic r2
lid4 = targetLogic r2
ComorphismAux r1' lid1' lid2' <-
(coerce lid2 lid3 $ ComorphismAux r1 lid1 lid2)
:: Maybe (AnyComorphismAux lid5 sublogics1
basic_spec1 sentence1 symb_items1 symb_map_items1
sign1 morphism1 symbol1 raw_symbol1 proof_tree1
lid6 sublogics2
basic_spec2 sentence2 symb_items2 symb_map_items2
sign2 morphism2 symbol2 raw_symbol2 proof_tree2)
-- r1' <- coerce lid2 lid3 r1
let r3 = CompComorphism r1' r2
-- lid5 = targetLogic r3
-- mor1' <- coerce lid2 lid3 mor1
-- mor1'' <- map_morphism r2 mor1'
-- mor <- comp lid5 mor2 mor1''
return undefined
-- return (GMorphism r3 undefined undefined) --sigma1 mor)
dom _ (GMorphism r sigma _mor) =
G_sign (sourceLogic r) sigma
cod _ (GMorphism r _sigma mor) =
G_sign lid2 (cod lid2 mor)
where lid2 = targetLogic r
legal_obj _ (G_sign lid sigma) = legal_obj lid sigma
legal_mor _ (GMorphism r sigma mor) =
legal_mor lid2 mor &&
case map_sign r sigma of
Just (sigma',_) -> sigma' == cod lid2 mor
Nothing -> False
where lid2 = targetLogic r
ideGrothendieck (G_sign lid sigma) =
GMorphism (IdComorphism lid) sigma (ide lid sigma)
domGrothendieck (GMorphism cid sigma _mor) = G_sign (sourceLogic cid) sigma
codGrothendieck (GMorphism cid _sigma mor) =
G_sign lid (cod lid mor)
where lid = targetLogic cid
gEmbed :: G_morphism -> GMorphism
gEmbed _ = error "gEmbed"
--gEmbed (G_morphism lid mor) =
-- GMorphism lid lid (id_Comorphism lid) (dom lid mor) mor
-- homogeneous Union of two Grothendieck signatures
homogeneousGsigUnion :: Pos -> G_sign -> G_sign -> Result G_sign
--homogeneousGsigUnion _ sign _ = return sign
homogeneousGsigUnion pos (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do
sigma2' <- rcoerce lid2 lid1 pos sigma2
sigma3 <- signature_union lid1 sigma1 sigma2'
return (G_sign lid1 sigma3)
-- homogeneous Union of a list of Grothendieck signatures
homogeneousGsigManyUnion :: Pos -> [G_sign] -> Result G_sign
homogeneousGsigManyUnion pos [] =
fatal_error "homogeneous union of emtpy list of signatures" pos
--homogeneousGsigManyUnion pos (sign:_) = return sign
homogeneousGsigManyUnion pos (G_sign lid sigma : gsigmas) = do
sigmas <- let coerce_lid (G_sign lid1 sigma1) =
rcoerce lid lid1 pos sigma1
in sequence (map coerce_lid gsigmas)
bigSigma <- let sig_union s1 s2 = do
s1' <- s1
signature_union lid s1' s2
in foldl sig_union (return sigma) sigmas
return (G_sign lid bigSigma)
-- homogeneous Union of a list of morphisms
homogeneousMorManyUnion :: Pos -> [G_morphism] -> Result G_morphism
homogeneousMorManyUnion pos [] =
fatal_error "homogeneous union of emtpy list of morphisms" pos
homogeneousMorManyUnion _ (m:_) = return m
{-
homogeneousMorManyUnion pos (G_morphism lid mor : gmors) = do
mors <- let coerce_lid (G_morphism lid1 mor1) =
rcoerce lid lid1 pos mor1
in sequence (map coerce_lid gmors)
bigMor <- let mor_union s1 s2 = do
s1' <- s1
morphism_union lid s1' s2
in foldl mor_union (return mor) mors
return (G_morphism lid bigMor)
-}
inclusion :: G_sign -> G_sign -> GMorphism
inclusion (G_sign _lid1 _sigma1) (G_sign _lid2 _sigma2) = error "inclusion"