Sign.hs revision 9f85afecbd79b3df5a0bb17bd28cd0b288dc3213
{- |
Module : $Header$
Description : Definition of signatures for the Edinburgh
Logical Framework
Copyright : (c) Kristina Sojakova, DFKI Bremen 2009
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : k.sojakova@jacobs-university.de
Stability : experimental
Portability : portable
-}
module LF.Sign where
import Common.Id
import Common.Doc
import Common.DocUtils
import qualified Data.Set as Set
import qualified Data.Map as Map
type NAME = Token
type DECL = ([NAME],EXP)
-- LF expressions
data EXP = Type
| Var NAME
| Appl EXP [EXP]
| Func [EXP] EXP
| Pi [DECL] EXP
| Lamb [DECL] EXP
deriving (Show, Ord)
-- signatures for LF
data Sign = Sign [DECL]
deriving (Show, Ord, Eq)
-- the empty signature
emptySig :: Sign
emptySig = Sign []
-- adds a symbol declaration to the signature
addSymbolDecl :: DECL -> Sign -> Sign
addSymbolDecl d (Sign ds) = Sign (ds ++ [d])
-- get the set of defined symbols
getSymbols :: Sign -> Set.Set NAME
getSymbols (Sign ds) = Set.fromList $ concatMap fst ds
-- pretty printing
instance Pretty Sign where
pretty = printSig
instance Pretty EXP where
pretty = printExp
printSig :: Sign -> Doc
printSig (Sign []) = text "EmptySig"
printSig (Sign ds) = vcat $ map printDecl ds
printDecl :: DECL -> Doc
printDecl (ns,e) = printNames ns <+> colon <+> pretty e
printDecls :: [DECL] -> Doc
printDecls xs = fsep $ punctuate comma $ map printDecl xs
printNames :: [NAME] -> Doc
printNames = ppWithCommas
printExp :: EXP -> Doc
printExp Type = text "type"
printExp (Var n) = pretty n
printExp (Appl e es) =
let f = printExpWithPrec (precAppl + 1) e
as = map (printExpWithPrec precAppl) es
in fsep (f:as)
printExp (Func es e) =
let as = map (printExpWithPrec precFunc) es
val = printExpWithPrec (precFunc + 1) e
in fsep $ prepPunctuate (text "-> ") (as ++ [val])
printExp (Pi ds e) = text "{" <> printDecls ds <> text "{" <> pretty e
printExp (Lamb ds e) = text "[" <> printDecls ds <> text "]" <> pretty e
printExpWithPrec :: Int -> EXP -> Doc
printExpWithPrec i e =
if prec e >= i
then parens $ printExp e
else printExp e
prec :: EXP -> Int
prec Type = 0
prec Var {} = 0
prec Appl {} = 1
prec Func {} = 2
prec Pi {} = 3
prec Lamb {} = 3
precFunc, precAppl :: Int
precFunc = 2
precAppl = 1
{- converts the expression into a form where each construct takes
exactly one argument -}
recForm :: EXP -> EXP
recForm Type = Type
recForm (Var n) = Var n
recForm (Appl f []) = recForm f
recForm (Appl f as) = Appl (recForm $ Appl f $ init as) $ [recForm $ last as]
recForm (Func [] a) = recForm a
recForm (Func (t:ts) a) = Func [recForm t] $ recForm $ Func ts a
recForm (Pi [] t) = recForm t
recForm (Pi (([],_):ds) a) = recForm $ Pi ds a
recForm (Pi (((n:ns),t):ds) a) =
Pi [([n],recForm t)] $ recForm $ Pi ((ns,t):ds) a
recForm (Lamb [] t) = recForm t
recForm (Lamb (([],_):ds) a) = recForm $ Lamb ds a
recForm (Lamb (((n:ns),t):ds) a) =
Lamb [([n],recForm t)] $ recForm $ Lamb ((ns,t):ds) a
{- modifies the given name until it is different from each of the names
in the input set -}
getNewName :: NAME -> Set.Set NAME -> NAME
getNewName var names = getNewNameH var names (tokStr var) 0
getNewNameH :: NAME -> Set.Set NAME -> String -> Int -> Token
getNewNameH var names root i =
if (Set.notMember var names)
then var
else let newVar = Token (root ++ (show i)) nullRange
in getNewNameH newVar names root $ i+1
-- returns a set of unbound identifiers used within an expression
getFreeVars :: EXP -> Set.Set NAME
getFreeVars e = getFreeVarsH $ recForm e
getFreeVarsH :: EXP -> Set.Set NAME
getFreeVarsH Type = Set.empty
getFreeVarsH (Var x) = Set.singleton x
getFreeVarsH (Appl f [a]) =
Set.union (getFreeVarsH f) (getFreeVarsH a)
getFreeVarsH (Func [t] v) =
Set.union (getFreeVarsH t) (getFreeVarsH v)
getFreeVarsH (Pi [([n],t)] a) =
Set.delete n $ Set.union (getFreeVarsH t) (getFreeVarsH a)
getFreeVarsH (Lamb [([n],t)] a) =
Set.delete n $ Set.union (getFreeVarsH t) (getFreeVarsH a)
getFreeVarsH _ = Set.empty
{- substitutions and renamings: the first argument specifies the desired
term/identifier substitutions and the second the set of identifiers which
cannot be used as new variable names -}
translate :: Map.Map NAME EXP -> Set.Set NAME -> EXP -> EXP
translate m s e =
let s1 = Set.unions $ map getFreeVars $ Map.elems m
in translateH m (Set.union s s1) (recForm e)
translateH :: Map.Map NAME EXP -> Set.Set NAME -> EXP -> EXP
translateH _ _ Type = Type
translateH m _ (Var n) = Map.findWithDefault (Var n) n m
translateH m s (Appl f [a]) = Appl (translate m s f) [translate m s a]
translateH m s (Func ts t) = Func (map (translate m s) ts) (translate m s t)
translateH m s (Pi [([x],t)] a) =
let t1 = translate m s t
x1 = getNewName x s
a1 = translate (Map.insert x (Var x1) m) (Set.insert x1 s) a
in Pi [([x1],t1)] a1
translateH m s (Lamb [([x],t)] a) =
let t1 = translate m s t
x1 = getNewName x s
a1 = translate (Map.insert x (Var x1) m) (Set.insert x1 s) a
in Lamb [([x1],t1)] a1
translateH _ _ t = t
-- equality
instance Eq EXP where
e1 == e2 = eq (recForm e1) (recForm e2)
eq :: EXP -> EXP -> Bool
eq Type Type = True
eq (Var x1) (Var x2) = x1 == x2
eq (Appl f1 [a1]) (Appl f2 [a2]) = and [f1 == f2, a1 == a2]
eq (Func [t1] s1) (Func [t2] s2) = and [t1 == t2, s1 == s2]
eq (Pi [([n1],t1)] s1) (Pi [([n2],t2)] s2) =
let syms1 = Set.delete n1 $ getFreeVars s1
syms2 = Set.delete n2 $ getFreeVars s2
v = getNewName n1 $ Set.union syms1 syms2
type1 = translate (Map.singleton n1 (Var v)) syms1 s1
type2 = translate (Map.singleton n2 (Var v)) syms2 s2
in and [t1 == t2, type1 == type2]
eq _ _ = False