IsaSign.hs revision 72aaab1105e454ec9f49103874cd8006dc2a358c
{- |
Module : $Header$
Description : abstract Isabelle HOL and HOLCF syntax
Copyright : (c) University of Cambridge, Cambridge, England
adaption (c) Till Mossakowski, Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Data structures for Isabelle signatures and theories.
Adapted from Isabelle.
-}
module Isabelle.IsaSign where
import qualified Data.Map as Map
import Data.List
import Isabelle.IsaProof
--------------- not quite from src/Pure/term.ML ------------------------
------------------------ Names -----------------------------------------
-- | type names
type TName = String
-- | names for values or constants (non-classes and non-types)
data VName = VName
{ new :: String -- ^ name within Isabelle
, altSyn :: Maybe AltSyntax -- ^ mixfix template syntax
} deriving Show
data AltSyntax = AltSyntax String [Int] Int deriving Show
mkVName :: String -> VName
mkVName s = VName { new = s, altSyn = Nothing }
-- | the original (Haskell) name
orig :: VName -> String
orig = new
instance Eq VName where
v1 == v2 = new v1 == new v2
instance Ord VName where
v1 <= v2 = new v1 <= new v2
{- | Indexnames can be quickly renamed by adding an offset to
the integer part, for resolution. -}
data Indexname = Indexname
{ unindexed :: String
, indexOffset :: Int
} deriving (Ord, Eq, Show)
{- Types are classified by sorts. -}
data IsaClass = IsaClass String
deriving (Ord, Eq, Show)
type Sort = [IsaClass]
{- The sorts attached to TFrees and TVars specify the sort of
that variable -}
data Typ = Type { typeId :: TName,
typeSort :: Sort,
typeArgs :: [Typ] }
| TFree { typeId :: TName,
typeSort :: Sort }
| TVar { indexname :: Indexname,
typeSort :: Sort }
deriving (Eq, Ord, Show)
{- Terms. Bound variables are indicated by depth number.
Free variables, (scheme) variables and constants have names.
A term is "closed" if every bound variable of level "lev"
is enclosed by at least "lev" abstractions.
It is possible to create meaningless terms containing loose bound vars
or type mismatches. But such terms are not allowed in rules. -}
-- IsCont True - lifted; IsCont False - not lifted, used for constructors
data Continuity = IsCont Bool | NotCont deriving (Eq, Ord, Show)
data TAttr = TFun | TMet | TCon | NA deriving (Eq, Ord, Show)
data DTyp = Hide { typ :: Typ,
kon :: TAttr,
arit :: Maybe Int }
| Disp { typ :: Typ,
kon :: TAttr,
arit :: Maybe Int }
deriving (Eq, Ord, Show)
data Term =
Const { termName :: VName,
termType :: DTyp }
| Free { termName :: VName }
| Abs { absVar :: Term,
termId :: Term,
continuity :: Continuity } -- lambda abstraction
| App { funId :: Term,
argId :: Term,
continuity :: Continuity } -- application
| If { ifId :: Term,
thenId :: Term,
elseId :: Term,
continuity :: Continuity }
| Case { termId :: Term,
caseSubst :: [(Term, Term)] }
| Let { letSubst :: [(Term, Term)],
inId :: Term }
| IsaEq { firstTerm :: Term,
secondTerm :: Term }
| Tuplex [Term] Continuity
deriving (Eq, Ord, Show)
data Sentence =
Sentence { isSimp :: Bool -- True for "[simp]"
, isRefuteAux :: Bool
, metaTerm :: MetaTerm
, thmProof :: Maybe IsaProof }
| Instance { tName :: TName
, arityArgs :: [Sort]
, arityRes :: Sort
, instProof :: IsaProof }
| ConstDef { senTerm :: Term }
| RecDef { keyWord :: String
, senTerms :: [[Term]] }
| TypeDef { newType :: Typ
, typeDef :: SetDecl
, nonEmptyPr :: IsaProof}
deriving (Eq, Ord, Show)
-- Other SetDecl variants to be added later
data SetDecl = SubSet Term Typ Term -- first is the variable
-- Second is the type of the variable
-- third is the formula describing the set comprehension
-- e.g. x Nat "even x" would be produce the isabelle
-- code: {x::Nat . even x}
deriving (Eq, Ord, Show)
data MetaTerm = Term Term
| Conditional [Term] Term -- List of preconditions, conclusion.
deriving (Eq, Ord, Show)
mkSen :: Term -> Sentence
mkSen t = Sentence
{ isSimp = False
, isRefuteAux = False
, thmProof = Nothing
, metaTerm = Term t }
mkCond :: [Term] -> Term -> Sentence
mkCond conds concl = Sentence
{ isSimp = False
, isRefuteAux = False
, thmProof = Nothing
, metaTerm = Conditional conds concl}
mkRefuteSen :: Term -> Sentence
mkRefuteSen t = (mkSen t) { isRefuteAux = True }
isRefute :: Sentence -> Bool
isRefute s = case s of
Sentence { isRefuteAux = b } -> b
_ -> False
-------------------- from src/Pure/sorts.ML ------------------------
{-- type classes and sorts --}
{- Classes denote (possibly empty) collections of types that are
partially ordered by class inclusion. They are represented
symbolically by strings.
Sorts are intersections of finitely many classes. They are
represented by lists of classes. Normal forms of sorts are sorted
lists of minimal classes (wrt. current class inclusion).
(already defined in Pure/term.ML)
classrel:
table representing the proper subclass relation; entries (c, cs)
represent the superclasses cs of c;
arities:
table of association lists of all type arities; (t, ars) means
that type constructor t has the arities ars; an element (c, Ss) of
ars represents the arity t::(Ss)c;
-}
type Classrel = Map.Map IsaClass (Maybe [IsaClass])
type Arities = Map.Map TName [(IsaClass, [(Typ, Sort)])]
type Abbrs = Map.Map TName ([TName], Typ)
data TypeSig =
TySg {
classrel:: Classrel, -- domain of the map yields the classes
defaultSort:: Sort,
log_types:: [TName],
univ_witness:: Maybe (Typ, Sort),
abbrs:: Abbrs, -- constructor name, variable names, type.
arities:: Arities }
-- actually isa-instances. the former field tycons can be computed.
deriving (Eq, Show)
emptyTypeSig :: TypeSig
emptyTypeSig = TySg {
classrel = Map.empty,
defaultSort = [],
log_types = [],
univ_witness = Nothing,
abbrs = Map.empty,
arities = Map.empty }
isSubTypeSig :: TypeSig -> TypeSig -> Bool
isSubTypeSig t1 t2 =
null (defaultSort t1 \\ defaultSort t2) &&
Map.isSubmapOf (classrel t1) (classrel t2) &&
null (log_types t1 \\ log_types t2) &&
(case univ_witness t1 of
Nothing -> True
w1 -> w1 == univ_witness t2) &&
Map.isSubmapOf (abbrs t1) (abbrs t2) &&
Map.isSubmapOf (arities t1) (arities t2)
-------------------- from src/Pure/sign.ML ------------------------
data BaseSig = Main_thy -- ^ main theory of higher order logic (HOL)
| MainHC_thy -- ^ extend main theory of HOL logic for HasCASL
| HOLCF_thy -- ^ higher order logic for continuous functions
| HsHOLCF_thy -- ^ HOLCF for Haskell
| HsHOL_thy -- ^ HOL for Haskell
| MHsHOL_thy
| MHsHOLCF_thy
deriving (Eq, Ord, Show)
{- possibly simply supply a theory like MainHC as string
or recursively as Isabelle.Sign -}
data Sign = Sign
{ theoryName :: String,
baseSig :: BaseSig, -- like Main etc.
tsig :: TypeSig,
constTab :: ConstTab, -- value cons with type
domainTab :: DomainTab,
showLemmas :: Bool
} deriving (Eq, Show)
{- list of datatype definitions
each of these consists of a list of (mutually recursive) datatypes
each datatype consists of its name (Typ) and a list of constructors
each constructor consists of its name (String) and list of argument
types
-}
type ConstTab = Map.Map VName Typ
-- same types for data types and domains
type DomainTab = [[DomainEntry]]
type DomainEntry = (Typ, [(VName, [Typ])])
emptySign :: Sign
emptySign = Sign { theoryName = "thy",
baseSig = Main_thy,
tsig = emptyTypeSig,
constTab = Map.empty,
domainTab = [],
showLemmas = False }
isSubSign :: Sign -> Sign -> Bool
isSubSign s1 s2 =
isSubTypeSig (tsig s1) (tsig s2) &&
Map.isSubmapOf (constTab s1) (constTab s2) &&
null (domainTab s1 \\ domainTab s2)
------------------------ Sentence -------------------------------------
{- Instances in Haskell have form:
instance (MyClass a, MyClass b) => MyClass (MyTypeConst a b)
In Isabelle:
instance MyTypeConst :: (MyClass, MyClass) MyClass
Note that the Isabelle syntax does not allows for multi-parameter classes.
Rather, it subsumes the syntax for arities.
Type constraints are applied to value constructors in Haskell as follows:
MyValCon :: (MyClass a, MyClass b) => MyTypeConst a b
In Isabelle:
MyValCon :: MyTypeConst (a::MyClass) (b::MyClass)
In both cases, the typing expressions may be encoded as schemes.
Schemes and instances allows for the inference of type constraints over
values of functions.
-}