IsaSign.hs revision 40a2368e1fa061488d0be6886368ab1c8391b97f
{- list of datatype definitions
each of these consists of a list of (mututally recursive) datatypes
each datatype consists of its name (Typ) and a list of constructors
each constructor consists of its name (String) and list of argument types
-}
{- |
Module : $Header$
Copyright : (c) University of Cambridge, Cambridge, England
adaption (c) Till Mossakowski, Uni Bremen 2002-2004
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : portable
Data structures for Isabelle sigantures and theories.
Adapted from Isabelle.
-}
module Isabelle.IsaSign where
import qualified Common.Lib.Map as Map
---------------- from src/Pure/Syntax/syntax.ML -------------------
type Syntax = () -- leave this for later
-- temporary!!
type Axiom = ()
-- type ProofObl = ()
-------------------- from src/Pure/term.ML ------------------------
{-Indexnames can be quickly renamed by adding an offset to the integer part,
for resolution.-}
type Indexname = (String,Int)
{- Types are classified by sorts. -}
-- Classes
data IsaClass = IsaClass { classId :: String, classDef :: [Axiom] }
| ClFun IsaClass IsaClass
deriving (Ord, Eq, Show)
--instance PPrint IsaClass where
-- pprint (IsaClass c _) = text "(" <> text c <> text ")"
-- pprint (ClFun c1 c2) =
-- text "(" <> pprint c1 <> text ")->(" <> pprint c2 <> text ")"
type Sort = [IsaClass]
domain:: Sort
domain = [pcpo]
isaTerm :: IsaClass
isaTerm = IsaClass "term" []
holType :: IsaClass
holType = IsaClass "hol_type" []
pcpo :: IsaClass
pcpo = IsaClass "pcpo" []
ho_ho_ho :: IsaClass -- (hol_type,hol_type)hol_type
ho_ho_ho = ClFun holType (ClFun holType holType)
------------------------------------------------------------------------------
{- The sorts attached to TFrees and TVars specify the sort of that variable -}
data Typ = Type { typeId :: String,
typeSort :: Sort,
typeArg :: [Typ] }
| TFree { typeId :: String,
typeSort :: Sort}
| TVar { indexname :: Indexname, -- (String,Int)
typeSort :: Sort }
deriving (Eq, Ord)
noType :: Typ
noType = dummyT
dummyT :: Typ
dummyT = Type "dummy" [holType] []
boolType :: Typ
boolType = Type "bool" [holType] []
mkOptionType :: Typ -> Typ
mkOptionType t = Type "option" [holType] [t]
mkProductType :: Typ -> Typ -> Typ
mkProductType t1 t2 = Type "*" [ho_ho_ho] [t1,t2]
mkTypeAppl :: Typ -> Typ -> Typ
mkTypeAppl t1 t2 = Type "typeAppl" [ho_ho_ho] [t1,t2]
mkFunType :: Typ -> Typ -> Typ
mkFunType s t = Type "fun" [ho_ho_ho] [s,t] -- was "-->" before
{-handy for multiple args: [T1,...,Tn]--->T gives T1-->(T2--> ... -->T)-}
mkCurryFunType :: [Typ] -> Typ -> Typ
mkCurryFunType = flip $ foldr mkFunType -- was "--->" before
voidDom :: Typ
voidDom = Type "void" domain []
-- voidDom = Type ("void",[pcpo],[])
{- should this be included (as primitive)? -}
flatDom :: Typ
flatDom = Type "flat" domain []
{- sort is ok? -}
mkContFun :: Typ -> Typ -> Typ
mkContFun t1 t2 = Type "dFun" domain [t1,t2]
-- mkContFun = Type ("dFun", [cp_pc_pc],[s,t])
mkDomProduct :: Typ -> Typ -> Typ
mkDomProduct t1 t2 = Type "**" domain [t1,t2]
-- mkDomProduct t1 t2 = Type ("**",[pc_pc_pc],[t1,t2])
mkDomSum :: Typ -> Typ -> Typ
mkDomSum t1 t2 = Type "++" domain [t1,t2]
-- mkDomSum t1 t2 = Type ("++",[pc_pc_pc],[t1,t2])
{- type application. is the sort ok? -}
mkDomAppl :: Typ -> Typ -> Typ
mkDomAppl t1 t2 = Type "domAppl" domain [t1,t2]
-- mkDomAppl t1 t2 =
-- Type ("domAppl",[pc_pc_pc],[t1,t2])
{-Terms. Bound variables are indicated by depth number.
Free variables, (scheme) variables and constants have names.
A term is "closed" if every bound variable of level "lev"
is enclosed by at least "lev" abstractions.
It is possible to create meaningless terms containing loose bound vars
or type mismatches. But such terms are not allowed in rules. -}
data Flag = IsCont | NotCont deriving (Eq,Ord)
data Term =
Const { termBasicId::String,
termType::Typ,
defaultClass::IsaClass } -- constants, with default class
| Free { termBasicId::String,
termType::Typ,
defaultClass::IsaClass } -- free variables
-- | Var (Indexname, Typ)
-- | Bound Int
| Abs { termId::Term,
termType::Typ,
absVar::Term,
flag::Flag } -- lambda abstraction
-- | CAbs { termId::Term,
-- termType::Typ,
-- absVar::Term } -- lambda abstraction
| App { funId::Term,
argId::Term,
flag::Flag } -- application
-- | CApp { funId::Term, argId::Term } -- application
| Case { termId::Term, caseSubst::[(Term, Term)], flag::Flag } -- case
| If { ifId::Term,
thenId::Term,
elseId::Term,
flag::Flag } -- If then else
| Let { letSubst::[(Term, Term)],
inId::Term,
flag::Flag } -- Let
| Fix { funId::Term }
deriving (Eq, Ord)
-- | CApp { funId::Term, termId::Term, proofObl::ProofObl } -- application
data Sentence = Sentence { senTerm :: Term } deriving (Eq, Ord)
-------------------- from src/Pure/sorts.ML ------------------------
{-- type classes and sorts --}
{-
Classes denote (possibly empty) collections of types that are
partially ordered by class inclusion. They are represented
symbolically by !!!!! strings. !!!!!!!!!!!
Sorts are intersections of finitely many classes. They are
represented by lists of classes. Normal forms of sorts are sorted
lists of minimal classes (wrt. current class inclusion).
(already defined in Pure/term.ML)
-}
{- sort signature information -}
{-
classrel:
table representing the proper subclass relation; entries (c, cs)
represent the superclasses cs of c;
arities:
table of association lists of all type arities; (t, ars) means
that type constructor t has the arities ars; an element (c, Ss) of
ars represents the arity t::(Ss)c;
-}
type Classrel = Map.Map String [IsaClass]
type Arities = Map.Map String [(IsaClass, [Sort])]
-------------------- from src/Pure/type.ML ------------------------
{- check what all the fields are. in particualar, check what arities
are in Isabelle and try to understand what role they play in the
translation. Then see whether there is some overlap with the new
definition of Sort.
emotional note -what the hell are all these strings?!
maybe after all its better to use the new representation of Sort,
threfrom extracting the arities when needed.
OK, add the HOLCF terms.
What's Syntax?
the problem now is to see where information about classes turns out
essential. it is not clear whether we need to encode class
information explicitly in the term data-type. after all, classes
should be inferred by the type. anyway, its time to check the actual
translation. the most critical point seems to be beta-reduction -
that should actually produce proof obligations. -}
data TypeSig =
TySg {
classes:: [IsaClass],
classrel:: Classrel,
defaultSort:: Sort,
tycons:: Map.Map String Int, -- type constructor names, with arities
log_types:: [String],
univ_witness:: Maybe (Typ, Sort),
abbrs:: Map.Map String ([String], Typ),
arities:: Arities }
deriving (Eq)
emptyTypeSig :: TypeSig
emptyTypeSig = TySg {
classes = [],
classrel = Map.empty,
defaultSort = [],
tycons = Map.empty,
log_types = [],
univ_witness = Nothing,
abbrs = Map.empty,
arities = Map.empty }
-------------------- from src/Pure/sign.ML ------------------------
data Sign = Sign { baseSig :: String, -- like Pure, HOL, Main etc.
tsig :: TypeSig,
constTab :: Map.Map String Typ, -- constants with type
dataTypeTab :: DataTypeTab,
domainTab :: DomainTab, -- needs HOLCF, extend this with domains
syn :: Syntax,
showLemmas :: Bool
}
deriving (Eq)
{- list of datatype definitions
each of these consists of a list of (mutually recursive) datatypes
each datatype consists of its name (Typ) and a list of constructors
each constructor consists of its name (String) and list of argument types
-}
type DataTypeTab = [DataTypeTabEntry]
type DataTypeTabEntry = [(Typ,[DataTypeAlt])] -- (type,[constructors])
type DataTypeAlt = (String,[Typ])
type DomainTab = [DomainTabEntry]
type DomainTabEntry = [(Typ,[DomainAlt])] -- (type,[constructors])
type DomainAlt = (String,[Typ])
emptySign :: Sign
emptySign = Sign { baseSig = "Pure",
tsig = emptyTypeSig,
constTab = Map.empty,
dataTypeTab = [],
domainTab = [],
showLemmas = False,
syn = () }