IsaSign.hs revision 021d18f2ee4fb07bb005693321ef9e2dd888f211
{- |
Module : $Header$
Copyright : (c) University of Cambridge, Cambridge, England
adaption (c) Till Mossakowski, Uni Bremen 2002-2004
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : portable
Data structures for Isabelle signatures and theories.
Adapted from Isabelle.
-}
module Isabelle.IsaSign where
import qualified Common.Lib.Map as Map
import Common.DefaultMorphism
-------------------- not quite from src/Pure/term.ML ------------------------
----------------------------- Names -----------------------------------------
type IName = String
type CName = IName -- class name
type TName = IName -- type name
type VName = IName -- value name
{-Indexnames can be quickly renamed by adding an offset to the integer part,
for resolution.-}
type Indexname = (String,Int)
--------- Classes
{- Types are classified by sorts. -}
data IsaClass = IsaClass CName
deriving (Ord, Eq, Show)
type Sort = [IsaClass]
holType :: Sort
holType = [IsaClass "hol_type"]
dom:: Sort
dom = [pcpo]
isaTerm :: IsaClass
isaTerm = IsaClass "term"
pcpo :: IsaClass
pcpo = IsaClass "pcpo"
----------- Kinds
data ExKind = IKind IsaKind | IClass | PLogic
data IsaKind = Star
| Kfun IsaKind IsaKind
deriving (Ord, Eq, Show)
------------------------------------------------------------------------------
{- The sorts attached to TFrees and TVars specify the sort of that variable -}
data Typ = Type { typeId :: TName,
typeSort :: Sort,
typeArgs :: [Typ] }
| TFree { typeId :: TName,
typeSort :: Sort }
| TVar { indexname :: Indexname, -- (String,Int)
typeSort :: Sort }
deriving (Eq, Ord, Show)
typeAppl :: Typ -> [Typ] -> Typ
typeAppl t ts =
case ts of
[] -> t
v:vs -> typeAppl (binTypeAppl t v) vs
binTypeAppl :: Typ -> Typ -> Typ
binTypeAppl t1 t2 = case t1 of
Type n s ts -> Type n s (t2:ts)
_ -> error "IsaSign.binTypeAppl, unsupported type application"
noType :: Typ
noType = dummyT
dummyT :: Typ
dummyT = Type "dummy" holType []
boolType :: Typ
boolType = Type "bool" holType []
mkOptionType :: Typ -> Typ
mkOptionType t = Type "option" holType [t]
prodType :: Typ -> Typ -> Typ
prodType t1 t2 = Type prodS holType [t1,t2]
mkFunType :: Typ -> Typ -> Typ
mkFunType s t = Type funS holType [s,t] -- was "-->" before
{-handy for multiple args: [T1,...,Tn]--->T gives T1-->(T2--> ... -->T)-}
mkCurryFunType :: [Typ] -> Typ -> Typ
mkCurryFunType = flip $ foldr mkFunType -- was "--->" before
voidDom :: Typ
voidDom = Type "void" dom []
-- voidDom = Type ("void",[pcpo],[])
{- should this be included (as primitive)? -}
flatDom :: Typ
flatDom = Type "flat" dom []
{- sort is ok? -}
mkContFun :: Typ -> Typ -> Typ
mkContFun t1 t2 = Type "dFun" dom [t1,t2]
mkStrictProduct :: Typ -> Typ -> Typ
mkStrictProduct t1 t2 = Type "**" dom [t1,t2]
mkContProduct :: Typ -> Typ -> Typ
mkContProduct t1 t2 = Type "*" dom [t1,t2]
{-handy for multiple args: [T1,...,Tn]--->T gives T1-->(T2--> ... -->T)-}
mkCurryContFun :: [Typ] -> Typ -> Typ
mkCurryContFun = flip $ foldr mkContFun -- was "--->" before
mkStrictSum :: Typ -> Typ -> Typ
mkStrictSum t1 t2 = Type "++" dom [t1,t2]
prodS :: TName
prodS = "*" -- this is printed as it is!
funS :: TName
funS = "fun" -- may be this should be "=>" for printing
{-Terms. Bound variables are indicated by depth number.
Free variables, (scheme) variables and constants have names.
A term is "closed" if every bound variable of level "lev"
is enclosed by at least "lev" abstractions.
It is possible to create meaningless terms containing loose bound vars
or type mismatches. But such terms are not allowed in rules. -}
data Continuity = IsCont | NotCont deriving (Eq, Ord ,Show)
data Term =
Const { termName :: VName,
termType :: Typ }
| Free { termName :: VName,
termType :: Typ }
| Var Indexname Typ
| Bound Int
| Abs { absVar :: Term,
termType :: Typ,
termId :: Term,
continuity :: Continuity } -- lambda abstraction
| App { funId :: Term,
argId :: Term,
continuity :: Continuity } -- application
| If { ifId :: Term,
thenId :: Term,
elseId :: Term,
continuity :: Continuity }
| Case { termId :: Term,
caseSubst :: [(Term, Term)] }
| Let { letSubst :: [(Term, Term)],
inId :: Term }
| IsaEq { firstTerm :: Term,
secondTerm :: Term }
| Tuplex [Term] Continuity
| Fix Term
| Bottom
| Paren Term
| Wildcard
deriving (Eq, Ord, Show)
data Sentence = Sentence { senTerm :: Term } -- axiom
| Theorem { thmFlag :: Bool -- True for "theorem"
, senTerm :: Term
, thmProof :: Maybe String }
| ConstDef { senTerm :: Term }
deriving (Eq, Ord, Show)
-------------------- from src/Pure/sorts.ML ------------------------
{-- type classes and sorts --}
{- Classes denote (possibly empty) collections of types that are
partially ordered by class inclusion. They are represented
symbolically by strings.
Sorts are intersections of finitely many classes. They are
represented by lists of classes. Normal forms of sorts are sorted
lists of minimal classes (wrt. current class inclusion).
(already defined in Pure/term.ML)
classrel:
table representing the proper subclass relation; entries (c, cs)
represent the superclasses cs of c;
arities:
table of association lists of all type arities; (t, ars) means
that type constructor t has the arities ars; an element (c, Ss) of
ars represents the arity t::(Ss)c;
-}
type Classrel = Map.Map IsaClass [IsaClass]
type Arities = Map.Map TName [(IsaClass, [(Typ, Sort)])]
type Abbrs = Map.Map TName ([TName], Typ)
data TypeSig =
TySg {
classrel:: Classrel, -- domain of the map yields the classes
defaultSort:: Sort,
log_types:: [TName],
univ_witness:: Maybe (Typ, Sort),
abbrs:: Abbrs, -- constructor name, variable names, type.
arities:: Arities }
-- actually isa-instances. the former field tycons can be computed.
deriving (Eq, Show)
emptyTypeSig :: TypeSig
emptyTypeSig = TySg {
classrel = Map.empty,
defaultSort = [],
log_types = [],
univ_witness = Nothing,
abbrs = Map.empty,
arities = Map.empty }
-------------------- from src/Pure/sign.ML ------------------------
data BaseSig = Pure_thy | HOL_thy | HOLCF_thy | Main_thy | MainHC_thy | HsHOLCF_thy
deriving (Eq, Ord, Show)
{- possibly simply supply a theory like MainHC as string
or recursively as Isabelle.Sign -}
data Sign = Sign { baseSig :: BaseSig, -- like Pure, HOL, Main etc.
tsig :: TypeSig,
constTab :: ConstTab, -- value cons with type
domainTab :: DomainTab,
dataTypeTab :: DataTypeTab,
showLemmas :: Bool
}
deriving (Eq, Show)
{- list of datatype definitions
each of these consists of a list of (mutually recursive) datatypes
each datatype consists of its name (Typ) and a list of constructors
each constructor consists of its name (String) and list of argument types
-}
type ConstTab = Map.Map VName Typ
type DataTypeTab = [DataTypeTabEntry]
type DataTypeTabEntry = [DataTypeEntry] -- (type,[value cons])
type DataTypeEntry = (Typ,[DataTypeAlt])
type DataTypeAlt = (VName,[Typ])
type DomainTab = [DomainTabEntry]
type DomainTabEntry = [DomainEntry] -- (type,[value cons])
type DomainEntry = (Typ,[DomainAlt])
type DomainAlt = (VName,[Typ])
emptySign :: Sign
emptySign = Sign { baseSig = Pure_thy,
tsig = emptyTypeSig,
constTab = Map.empty,
dataTypeTab = [],
domainTab = [],
showLemmas = False }
type IsabelleMorphism = DefaultMorphism Sign
------------------------ Sentence -------------------------------------
{- Instances in Haskell have form:
instance (MyClass a, MyClass b) => MyClass (MyTypeConst a b)
In Isabelle:
instance MyTypeConst :: (MyClass, MyClass) MyClass
Note that the Isabelle syntax does not allows for multi-parameter classes.
Rather, it subsumes the syntax for arities.
Type constraints are applied to value constructors in Haskell as follows:
MyValCon :: (MyClass a, MyClass b) => MyTypeConst a b
In Isabelle:
MyValCon :: MyTypeConst (a::MyClass) (b::MyClass)
In both cases, the typing expressions may be encoded as schemes.
Schemes and instances allows for the inference of type constraints over
values of functions.
-}