IsaPrint.hs revision fdd2ea0556081ab3fdca6cd8846c4f1eee74fd3a
{- |
Module : $Header$
Description : printing Isabelle entities
Copyright : (c) University of Cambridge, Cambridge, England
adaption (c) Till Mossakowski, Uni Bremen 2002-2006
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
Printing functions for Isabelle logic.
-}
module Isabelle.IsaPrint
( showBaseSig
, printIsaTheory
, printIsaTheoryWithProofs
, getAxioms
, printNamedSen
) where
import Isabelle.IsaSign
import Isabelle.IsaConsts
import Isabelle.IsaProofPrint
import Common.AS_Annotation
import qualified Data.Map as Map
import Common.Doc hiding (bar)
import Common.DocUtils
import Data.Char
import Data.List
printIsaTheory :: String -> Sign -> [Named Sentence] -> Doc
printIsaTheory = printIsaTheoryWithProofs oopsS
printIsaTheoryWithProofs :: String -> String -> Sign -> [Named Sentence] -> Doc
printIsaTheoryWithProofs prf tn sign sens = let
b = baseSig sign
bs = showBaseSig b
ld = "$HETS_LIB/Isabelle/"
use = text usesS <+> doubleQuotes (text $ ld ++ "prelude")
in text theoryS <+> text tn
$+$ text importsS <+> (if case b of
Main_thy -> False
HOLCF_thy -> False
_ -> True then doubleQuotes $ text $ ld ++ bs else text bs)
$+$ use
$+$ text beginS
$++$ printTheoryBody prf sign sens
$++$ text endS
printTheoryBody :: String -> Sign -> [Named Sentence] -> Doc
printTheoryBody prf sig sens =
let (axs, rest) =
getAxioms sens
(defs, rs) = getDefs rest
(rdefs, ts) = getRecDefs rs
tNames = map senAttr $ ts ++ axs
in
callML "initialize" (brackets $ sepByCommas
$ map (text . show . Quote) tNames) $++$
printSign sig $++$
(if null axs then empty else text axiomsS $+$
vsep (map printNamedSen axs)) $++$
(if null defs then empty else text defsS $+$
vsep (map printNamedSen defs)) $++$
vsep (map printNamedSen rdefs) $++$
vcat (map ( \ a -> text declareS <+> text (senAttr a)
<+> brackets (text simpS))
$ filter ( \ a -> case sentence a of
b@Sentence{} -> isSimp b
_ -> False) axs) $++$
vsep (map ( \ t -> printNamedSen t $+$
(case sentence t of
Sentence { thmProof = Just pr } -> pretty pr
_ -> text prf)
$++$ callML "record" (text $ show $ Quote $ senAttr t)) ts)
$++$ printMonSign sig
callML :: String -> Doc -> Doc
callML fun args =
text mlS <+> doubleQuotes (fsep [text ("Header." ++ fun), args])
data QuotedString = Quote String
instance Show QuotedString where
show (Quote s) = init . tail . show $ show s
getAxioms, getDefs, getRecDefs :: [Named Sentence] ->
([Named Sentence], [Named Sentence])
getAxioms = partition ( \ s -> case sentence s of
Sentence {} -> isAxiom s
_ -> False)
getDefs = partition ( \ s -> case sentence s of
ConstDef {} -> True
_ -> False)
getRecDefs = partition ( \ s -> case sentence s of
RecDef {} -> True
_ -> False)
----------------------- Printing functions -----------------------------
showBaseSig :: BaseSig -> String
showBaseSig = reverse . drop 4 . reverse . show
printClass :: IsaClass -> Doc
printClass (IsaClass x) = text x
printSort :: Sort -> Doc
printSort l = case l of
[c] -> printClass c
_ -> specBraces . hsep . punctuate comma $ map printClass l
data SynFlag = Quoted | Unquoted | Null
doubleColon :: Doc
doubleColon = text "::"
bar :: [Doc] -> [Doc]
bar = punctuate $ space <> text "|"
printType :: Typ -> Doc
printType = printTyp Unquoted
printTyp :: SynFlag -> Typ -> Doc
printTyp a = fst . printTypeAux a
printTypeAux :: SynFlag -> Typ -> (Doc, Int)
printTypeAux a t = case t of
(TFree v s) -> (let
d = text $ if isPrefixOf "\'" v || isPrefixOf "?\'" v
then v else '\'' : v
c = printSort s
in if null s then d else case a of
Quoted -> d <> doubleColon <> if null
$ tail s then c else doubleQuotes c
Unquoted -> d <> doubleColon <> c
Null -> d, 1000)
(TVar iv s) -> printTypeAux a $ TFree ("?\'" ++ unindexed iv) s
(Type name _ args) -> case args of
[t1, t2] | elem name [prodS, sProdS, funS, cFunS, lFunS, sSumS] ->
printTypeOp a name t1 t2
_ -> ((case args of
[] -> empty
[arg] -> let (d, i) = printTypeAux a arg in
if i < 1000 then parens d else d
_ -> parens $ hsep $ punctuate comma $
map (fst . printTypeAux a) args)
<+> text name, 1000)
printTypeOp :: SynFlag -> TName -> Typ -> Typ -> (Doc, Int)
printTypeOp x name r1 r2 =
let (d1, i1) = printTypeAux x r1
(d2, i2) = printTypeAux x r2
(l, r) = Map.findWithDefault (0 :: Int, 0 :: Int)
name $ Map.fromList
[ (funS, (1,0))
, (cFunS, (1,0))
, (lFunS, (1,0))
, (sSumS, (11, 10))
, (prodS, (21, 20))
, (sProdS, (21, 20))
, (lProdS, (21, 20))
]
d3 = if i1 < l then parens d1 else d1
d4 = if i2 < r then parens d2 else d2
in (d3 <+> text name <+> d4, r)
and_docs :: [Doc] -> Doc
and_docs ds = vcat $ prepPunctuate (text andS <> space) ds
-- | printing a named sentence
printNamedSen :: Named Sentence -> Doc
printNamedSen ns =
let s = sentence ns
lab = senAttr ns
b = isAxiom ns
d = printSentence s
in case s of
RecDef {} -> d
_ -> let dd = doubleQuotes d in
if isRefute s then text lemmaS <+> text lab <+> colon
<+> dd $+$ text refuteS
else if null lab then dd else fsep[ (case s of
ConstDef {} -> text $ lab ++ "_def"
Sentence {} ->
(if b then empty else text theoremS)
<+> text lab <+> (if b then text "[rule_format]" else
if isSimp s then text "[simp]" else empty)
_ -> error "printNamedSen") <+> colon, dd]
-- | sentence printing
printSentence :: Sentence -> Doc
printSentence s = case s of
RecDef kw xs -> text kw <+>
and_docs (map (vcat . map (doubleQuotes . printTerm)) xs)
_ -> printPlainTerm (not $ isRefute s) $ senTerm s
-- | print plain term
printTerm :: Term -> Doc
printTerm = printPlainTerm True
printPlainTerm :: Bool -> Term -> Doc
printPlainTerm b = fst . printTrm b
-- | print parens but leave a space if doc starts or ends with a bar
parensForTerm :: Doc -> Doc
parensForTerm d =
let s = show d
b = '|'
in parens $ if null s then d
else (if head s == b then (space <>) else id)
((if last s == b then (<> space) else id) d)
printParenTerm :: Bool -> Int -> Term -> Doc
printParenTerm b i t = case printTrm b t of
(d, j) -> if j < i then parensForTerm d else d
flatTuplex :: [Term] -> Continuity -> [Term]
flatTuplex cs c = case cs of
[] -> cs
_ -> case last cs of
Tuplex rs@(_ : _ : _) d | d == c -> init cs ++ flatTuplex rs d
_ -> cs
printMixfixAppl :: Bool -> Continuity -> Term -> [Term] -> (Doc, Int)
printMixfixAppl b c f args = case f of
Const (VName n (Just (AltSyntax s is i))) _ ->
if length is == length args &&
(b || n == cNot || isPrefixOf "op " n) then
(fsep $ replaceUnderlines s
$ zipWith (printParenTerm b) is args, i)
else printApp b c f args
Const vn _ | new vn `elem` [allS, exS, ex1S] -> case args of
[Abs v t _] -> (fsep [text (new vn) <+> printPlainTerm False v
<> text "."
, printPlainTerm b t], lowPrio)
_ -> printApp b c f args
App g a d | c == d -> printMixfixAppl b c g (a : args)
_ -> printApp b c f args
-- | print the term using the alternative syntax (if True)
printTrm :: Bool -> Term -> (Doc, Int)
printTrm b trm = case trm of
Const vn ty -> let
dvn = text $ new vn
nvn = case ty of
Hide _ _ _ -> dvn
Disp w _ _ -> parens $ dvn <+> doubleColon <+> printType w
in case altSyn vn of
Nothing -> (nvn, maxPrio)
Just (AltSyntax s is i) -> if b && null is then
(fsep $ replaceUnderlines s [], i) else (nvn, maxPrio)
Free vn -> (text $ new vn, maxPrio)
Abs v t c -> ((text $ case c of
NotCont -> "%"
IsCont _ -> "Lam") <+> printPlainTerm False v <> text "."
<+> printPlainTerm b t, lowPrio)
If i t e c -> let d = fsep [printPlainTerm b i,
text (case c of
NotCont -> "then"
IsCont _ -> "THEN")
<+> printPlainTerm b t,
text (case c of
NotCont -> "else"
IsCont _ -> "ELSE")
<+> printPlainTerm b e]
in case c of
NotCont -> (text "if" <+> d, lowPrio)
IsCont _ -> (text "IF" <+> d <+> text "FI", maxPrio)
Case e ps -> (text "case" <+> printPlainTerm b e <+> text "of"
$+$ vcat (bar $ map (\ (p, t) ->
fsep [ printPlainTerm b p <+> text "=>"
, printParenTerm b (lowPrio + 1) t]) ps), lowPrio)
Let es i -> (fsep [text "let" <+>
vcat (punctuate semi $
map (\ (p, t) -> fsep [ printPlainTerm b p <+> text "="
, printPlainTerm b t]) es)
, text "in" <+> printPlainTerm b i], lowPrio)
IsaEq t1 t2 ->
(fsep [ printParenTerm b (isaEqPrio + 1) t1 <+> text "=="
, printParenTerm b isaEqPrio t2], isaEqPrio)
Tuplex cs c -> case c of
NotCont -> (parensForTerm
$ sepByCommas (map (printPlainTerm b)
$ flatTuplex cs c)
, maxPrio)
IsCont _ -> case cs of
[] -> error "IsaPrint, printTrm"
[a] -> printTrm b a
a:aa -> printTrm b $ App (App
lpairTerm a $ IsCont False)
(Tuplex aa c) (IsCont False)
App f a c -> printMixfixAppl b c f [a]
printApp :: Bool -> Continuity -> Term -> [Term] -> (Doc, Int)
printApp b c t l = case l of
[] -> printTrm b t
_ -> printDocApp b c (printParenTerm b (maxPrio - 1) t) l
printDocApp :: Bool -> Continuity -> Doc -> [Term] -> (Doc, Int)
printDocApp b c d l =
(fsep $ (case c of
NotCont -> id
IsCont True -> punctuate $ text " $$"
IsCont False -> punctuate $ text " $")
$ d : map (printParenTerm b maxPrio) l
, maxPrio - 1)
replaceUnderlines :: String -> [Doc] -> [Doc]
replaceUnderlines str l = case str of
"" -> []
'\'': r@(q : s) -> if q `elem` "_/'()"
then cons (text [q]) $ replaceUnderlines s l
else cons (text "'") $ replaceUnderlines r l
'_' : r -> case l of
h : t -> cons h $ replaceUnderlines r t
_ -> error "replaceUnderlines"
'/' : ' ' : r -> empty : replaceUnderlines r l
q : r -> if q `elem` "()/" then replaceUnderlines r l
else cons (text [q]) $ replaceUnderlines r l
where
cons :: Doc -> [Doc] -> [Doc]
cons d r = case r of
[] -> [d]
h : t -> let
b = '|'
hs = show h
ds = show d
hhs = head hs
lds = last ds
in if null hs || null ds then (d <> h) : t else
if hhs == b && lds == '('
|| last ds == b && hhs == ')' then (d <+> h) : t
else (d <> h) : t
-- end of term printing
printClassrel :: Classrel -> Doc
printClassrel = vcat . map printClassR . (orderCDecs . Map.toList)
printClassR :: (IsaClass,[IsaClass]) -> Doc
printClassR (y,ys) = case ys of
[] -> empty
z:zs -> text axclassS <+> printClass y <+> text "<" <+>
printClass z $+$
(vcat $ map (\x ->
text instanceS <+> printClass y <+> text "<" <+>
printClass x <+> text "..") zs)
orderCDecs :: [(IsaClass, Maybe [IsaClass])] -> [(IsaClass,[IsaClass])]
orderCDecs ls = let
ws = [(x,ys) | (x,Just ys) <- ls]
in quickSort crord ws
where
crord m n = elem (fst n) (snd m)
printMonArities :: String -> Arities -> Doc
printMonArities tn = vcat . map ( \ (t, cl) ->
vcat $ map (printThMorp tn t) cl) . Map.toList
printThMorp :: String -> TName -> (IsaClass, [(Typ, Sort)]) -> Doc
printThMorp tn t xs = case xs of
(IsaClass "Monad", _) ->
if (isSuffixOf "_mh" tn) || (isSuffixOf "_mhc" tn)
then printMInstance tn t
else error "IsaPrint, printInstance: monads not supported"
_ -> empty
printArities :: Arities -> Doc
printArities = vcat . map ( \ (t, cl) ->
vcat $ map (printInstance t) cl) . Map.toList
printInstance :: TName -> (IsaClass, [(Typ, Sort)]) -> Doc
printInstance t xs = case xs of
(IsaClass "Monad", _) -> empty
_ -> printNInstance t xs
printMInstance :: String -> TName -> Doc
printMInstance tn t = let nM = text (t ++ "_tm")
nM2 = text (t ++ "_tm2")
in prnThymorph nM "MonadType" tn t [("MonadType.M","'a")] []
$+$ text "t_instantiate MonadOps mapping" <+> nM
$+$ text "renames:" <+>
brackMapList (\x -> t ++ "_" ++ x)
[("MonadOpEta.eta","eta"),("MonadOpBind.bind","bind")]
$+$ text "without_syntax"
$++$ text "defs "
$+$ text (t ++ "_eta_def:") <+> doubleQuotes
(text (t ++ "_eta") <+> text "==" <+> text ("return_" ++ t))
$+$ text (t ++ "_bind_def:") <+> doubleQuotes
(text (t ++ "_bind") <+> text "==" <+> text ("mbind_" ++ t))
$++$ lunitLemma t
$+$ runitLemma t
$+$ assocLemma t
$+$ etaInjLemma t
$++$ prnThymorph nM2 "MonadAxms" tn t [("MonadType.M","'a")]
[("MonadOpEta.eta",(t ++ "_eta")),
("MonadOpBind.bind",(t ++ "_bind"))]
$+$ text "t_instantiate Monad mapping" <+> nM2
$+$ text "renames:" <+>
brackMapList (\x -> t ++ "_" ++ x)
[("Monad.kapp","kapp"),
("Monad.lift","lift"),
("Monad.lift","lift"),
("Monad.mapF","mapF"),
("Monad.bind'","mbbind"),
("Monad.joinM","joinM"),
("Monad.kapp2","kapp2"),
("Monad.kapp3","kapp3"),
("Monad.lift2","lift2"),
("Monad.lift3","lift3")]
$+$ text "without_syntax"
$++$ text " "
where
lunitLemma w = text "lemma" <+> text (w ++ "_lunit:")
<+> doubleQuotes (text (w ++ "_bind")
<+> parens (text (w ++ "_eta x"))
<+> parens (text $ "t::'a => 'b " ++ w)
<+> text "=" <+> text "t x")
$+$ text "sorry "
runitLemma w = text "lemma" <+> text (w ++ "_runit:")
<+> doubleQuotes (text (w ++ "_bind")
<+> parens (text $ "t::'a " ++ w) <+> text (w ++ "_eta")
<+> text "=" <+> text "t")
$+$ text "sorry "
assocLemma w = text "lemma" <+> text (w ++ "_assoc:")
<+> doubleQuotes ((text $ w ++ "_bind")
<+> parens ((text $ w ++ "_bind")
<+> parens (text $ "s::'a " ++ w) <+> text "t") <+> text "u"
<+> text "=" <+> text (w ++ "_bind s")
<+> parens ((text "%x.") <+>
(text $ w ++ "_bind") <+> text "(t x) u"))
$+$ text "sorry "
etaInjLemma w = text "lemma" <+> text (w ++ "_eta_inj:")
<+> doubleQuotes (parens (text $ w ++ "_eta::'a => 'a " ++ w)
<+> text "x"
<+> text "=" <+> (text $ w ++ "_eta y")
<+> text "==>" <+> text "x = y")
$+$ text "sorry "
prnThymorph :: Doc -> String -> String -> TName ->
[(String,String)] -> [(String,String)] -> Doc
prnThymorph nm xn tn t ts ws = let tArrow = text ("-" ++ "->")
in (text "thymorph" <+> nm <+> colon <+>
text xn <+> tArrow <+> text tn)
$+$ text " maps" <+> (brackets $
hcat [parens $ (doubleQuotes (text b <+> text a) <+>
text "|->" <+>
doubleQuotes (text b <+> (text $ tn ++ "." ++ t))) |
(a,b) <- ts])
$+$ brackMapList (\j -> tn ++ "." ++ j) ws
brackMapList :: (String -> String) -> [(String,String)] -> Doc
brackMapList f ws = (brackets $
hsep $ punctuate comma [parens $ (doubleQuotes (text a)
<+> text "|->" <+> doubleQuotes (text $ f b)) | (a,b) <- ws])
printNInstance :: TName -> (IsaClass, [(Typ, Sort)]) -> Doc
printNInstance t (IsaClass x, xs) = let
ys = map snd xs
in (if elem t ["unitT","intT","integerT","charT","ratT"]
then printNInst "lift" [holType]
else printNInst t ys)
<+> (text x) <+> text ".."
printNInst :: TName -> [Sort] -> Doc
printNInst t xs = text instanceS <+> text t <>
doubleColon <> (case xs of
[] -> empty
_ -> parens $ hsep $ punctuate comma $
map (doubleQuotes . printSort) xs)
-- filter out types that are given in the domain table
printTypeDecls :: DomainTab -> Arities -> Doc
printTypeDecls odt ars =
let dt = Map.fromList $ map (\ (t, _) -> (typeId t, []))
$ concat odt
in vcat $ map printTycon $ Map.toList
$ Map.difference ars dt
printTycon :: (TName, [(IsaClass, [(Typ, Sort)])]) -> Doc
printTycon (t, arity') =
let arity = if null arity' then
error "IsaPrint.printTycon"
else length (snd $ head arity') in
if elem t ["lBool","intT","integerT","charT","ratT","lString"
,"unitT","unit","bool","int","char","rat","string"
,"lOrdering","sOrdering","either","*"
,"llist","list","lprod","lEither","lMaybe","option"
]
then empty else
text typedeclS <+>
(if arity > 0
then parens $ hsep $ punctuate comma
$ map (text . ("'a"++) . show) [1..arity]
else empty) <+> text t
-- | show alternative syntax (computed by comorphisms)
printAlt :: VName -> Doc
printAlt (VName _ altV) = case altV of
Nothing -> empty
Just (AltSyntax s is i) -> parens $ doubleQuotes (text s)
<+> if null is then empty else text (show is) <+>
if i == maxPrio then empty else text (show i)
instance Pretty Sign where
pretty = printSign
-- | a dummy constant table with wrong types
constructors :: DomainTab -> ConstTab
constructors = Map.fromList . map (\ v -> (v, noTypeT))
. concatMap (map fst . snd) . concat
printMonSign :: Sign -> Doc
printMonSign sig = let ars = arities $ tsig sig
in
printMonArities (theoryName sig) ars
cmpDomainEntries :: [(Typ, [(VName, [Typ])])] -> [(Typ, [(VName, [Typ])])]
-> Ordering
cmpDomainEntries l1 l2 = let
t1 = map fst l1
t2 = map fst l2
a1 = concatMap (concatMap snd . snd) l1
a2 = concatMap (concatMap snd . snd) l2
in case (null $ intersect t1 a2, null $ intersect t2 a1) of
(True, False) -> GT
(False, True) -> LT
(True, True) -> EQ
(False, False) -> error "cmpDomainEntries"
printSign :: Sign -> Doc
printSign sig = let dt = sortBy cmpDomainEntries $ domainTab sig
ars = arities $ tsig sig
in
printAbbrs (abbrs $ tsig sig) $++$
printTypeDecls dt ars $++$
printClassrel (classrel $ tsig sig) $++$
printDomainDefs dt $++$
printConstTab (Map.difference (constTab sig)
$ constructors dt) $++$
(if showLemmas sig
then showCaseLemmata (domainTab sig) else empty) $++$
printArities ars
where
printAbbrs tab = if Map.null tab then empty else text typesS
$+$ vcat (map printAbbr $ Map.toList tab)
printAbbr (n, (vs, t)) = (case vs of
[] -> empty
[x] -> text ("\'" ++ x)
_ -> parens $ hsep $ punctuate comma $
map (\x -> text $ "\'" ++ x) vs)
<+> (text $ n) <+> equals <+> (doubleQuotes $ printType t)
printConstTab tab = if Map.null tab then empty else text constsS
$+$ vcat (map printConst $ Map.toList tab)
printConst (vn, t) = text (new vn) <+> doubleColon <+>
doubleQuotes (printType t) <+> printAlt vn
isDomain = case baseSig sig of
HOLCF_thy -> True
HsHOLCF_thy -> True
MHsHOLCF_thy -> True
_ -> False
printDomainDefs dtDefs = vcat $ map printDomainDef dtDefs
printDomainDef dts = if null dts then empty else
text (if isDomain then domainS else datatypeS)
<+> and_docs (map printDomain dts)
printDomain (t, ops) =
printTyp (if isDomain then Quoted else Null) t <+> equals <+>
hsep (bar $ map printDOp ops)
printDOp (vn, args) = let opname = new vn in
text opname <+> hsep (map (printDOpArg opname)
$ zip args [1 :: Int .. ])
<+> printAlt vn
printDOpArg o (a, i) = let
d = case a of
TFree _ _ -> printTyp Null a
_ -> doubleQuotes $ printTyp Null a
in if isDomain then
parens $ text "lazy" <+>
text (o ++ "_" ++ show i) <> doubleColon <> d
else d
showCaseLemmata dtDefs = text (concat $ map showCaseLemmata1 dtDefs)
showCaseLemmata1 dts = concat $ map showCaseLemma dts
showCaseLemma (_, []) = ""
showCaseLemma (tyCons, (c:cons)) =
let cs = "case caseVar of" ++ sp
sc b = showCons b c ++ (concat $ map ((" | " ++)
. (showCons b)) cons)
clSome = sc True
cl = sc False
showCons b ((VName {new=cName}), args) =
let pat = cName ++ (concat $ map ((sp ++) . showArg) args)
++ sp ++ "=>" ++ sp
term = showCaseTerm cName args
in
if b then pat ++ "Some" ++ sp ++ lb ++ term ++ rb ++ "\n"
else pat ++ term ++ "\n"
showCaseTerm name args = if null name then sa
else [toLower (head name)] ++ sa
where sa = (concat $ map ((sp ++) . showArg) args)
showArg (TFree [] _) = "varName"
showArg (TFree (n:ns) _) = [toLower n] ++ ns
showArg (TVar v s) = showArg (TFree (unindexed v) s)
showArg (Type [] _ _) = "varName"
showArg (Type m@(n:ns) _ s) =
if m == "typeAppl" || m == "fun" || m == "*"
then concat $ map showArg s
else [toLower n] ++ ns
showName (TFree v _) = v
showName (TVar v _) = unindexed v
showName (Type n _ _) = n
proof = "apply (case_tac caseVar)\napply (auto)\ndone\n"
in
"lemma" ++ sp ++ "case_" ++ showName tyCons ++ "_SomeProm" ++ sp
++ "[simp]:\"" ++ sp ++ lb ++ cs ++ clSome ++ rb ++ sp
++ "=\n" ++ "Some" ++ sp ++ lb ++ cs ++ cl ++ rb ++ "\"\n"
++ proof
instance Pretty Sentence where
pretty = printSentence
sp :: String
sp = " "
rb :: String
rb = ")"
lb :: String
lb = "("