IsaParse.hs revision 98890889ffb2e8f6f722b00e265a211f13b5a861
{- |
Module : $Header$
Description : parser for an Isabelle theory
Copyright : (c) C. Maeder and Uni Bremen 2005-2006
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
parse the outer syntax of an Isabelle theory file. The syntax is taken from
<http://isabelle.in.tum.de/dist/Isabelle/doc/isar-ref.pdf> for Isabelle2005.
-}
module Isabelle.IsaParse
(parseTheory
, Body(..)
, TheoryHead(..)
, SimpValue(..)
, warnSimpAttr
, compatibleBodies) where
import Isabelle.IsaConsts
import Common.DocUtils
import Common.Id
import Common.Lexer
import Common.Parsec
import Common.Result
import Text.ParserCombinators.Parsec
import Control.Monad
import Data.List
import qualified Data.Map as Map
latin :: Parser String
latin = single letter <?> "latin"
greek :: Parser String
greek = string "\\<" <++>
optionL (string "^") -- isup
<++> many1 letter <++> string ">" <?> "greek"
isaLetter :: Parser String
isaLetter = latin <|> greek
quasiletter :: Parser String
quasiletter = single (digit <|> char '\'' <|> char '_' ) <|> isaLetter
<?> "quasiletter"
restident :: Parser String
restident = flat (many quasiletter)
ident :: Parser String
ident = isaLetter <++> restident
longident :: Parser String
longident = ident <++> flat (many $ char '.' <:> ident)
symident :: Parser String
symident = many1 (oneOf "!#$&*+-/:<=>?@^_|~" <?> "sym") <|> greek
isaString :: Parser String
isaString = enclosedBy (flat $ many (single (noneOf "\\\"")
<|> char '\\' <:> single anyChar))
(char '\"')
verbatim :: Parser String
verbatim = plainBlock "{*" "*}"
nestComment :: Parser String
nestComment = nestedComment "(*" "*)"
nat :: Parser String
nat = many1 digit <?> "nat"
name :: Parser String
name = ident <|> symident <|> isaString <|> nat
nameref :: Parser String -- sort
nameref = longident <|> symident <|> isaString <|> nat
isaText :: Parser String
isaText = nameref <|> verbatim
typefree :: Parser String
typefree = char '\'' <:> ident
indexsuffix :: Parser String
indexsuffix = optionL (char '.' <:> nat)
typevar :: Parser String
typevar = tryString "?'" <++> ident <++> optionL (char '.' <:> nat)
typeP :: Parser Token
typeP = lexP typefree <|> lexP typevar <|> namerefP
var :: Parser String
var = try (char '?' <:> isaLetter) <++> restident <++> indexsuffix
term :: Parser String -- prop
term = var <|> nameref
isaSkip :: Parser ()
isaSkip = skipMany (many1 space <|> nestComment <?> "")
lexP :: Parser String -> Parser Token
lexP = liftM2 (\ p s -> Token s (Range [p])) getPos . (<< isaSkip)
lexS :: String -> Parser String
lexS = (<< isaSkip) . tryString
headerP :: Parser Token
headerP = lexS headerS >> lexP isaText
nameP :: Parser Token
nameP = lexP $ reserved isaKeywords name
namerefP :: Parser Token
namerefP = lexP $ reserved isaKeywords nameref
parname :: Parser Token
parname = lexS "(" >> lexP name << lexS ")"
-- | the theory part before and including the begin keyword with a context
data TheoryHead = TheoryHead
{ theoryname :: Token
, imports :: [Token]
, uses :: [Token]
, context :: Maybe Token
} deriving Eq
theoryHead :: Parser TheoryHead
theoryHead = do
isaSkip
optionMaybe headerP
lexS theoryS
th <- nameP
is <- optionL (lexS importsS >> many nameP)
us <- optionL (lexS usesS >> many (nameP <|> parname))
lexS beginS
oc <- optionMaybe nameP
return $ TheoryHead th is us oc
commalist :: Parser a -> Parser [a]
commalist = flip sepBy1 (lexS ",")
parensP :: Parser a -> Parser a
parensP p = do
lexS "("
a <- p
lexS ")"
return a
bracketsP :: Parser a -> Parser a
bracketsP p = do
lexS "["
a <- p
lexS "]"
return a
bracesP :: Parser a -> Parser a
bracesP p = do
lexS "{"
a <- p
lexS "}"
return a
recordP :: Parser a -> Parser a
recordP p = do
lexS "(|"
a <- p
lexS "|)"
return a
locale :: Parser Token
locale = parensP $ lexS "in" >> nameP
markupP :: Parser Token
markupP = choice (map lexS markups) >> optional locale >> lexP isaText
infixP :: Parser ()
infixP = choice (map lexS ["infixl", "infixr", "infix"])
>> optional (lexP isaString) << lexP nat
mixfixSuffix :: Parser ()
mixfixSuffix = lexP isaString
>> optionL (bracketsP $ commalist $ lexP nat)
>> optional (lexP nat)
structureL :: Parser ()
structureL = forget $ lexS structureS
genMixfix :: Bool -> Parser ()
genMixfix b = parensP $
(if b then id else (<|> structureL)) $
infixP <|> mixfixSuffix <|> (lexS "binder" >> mixfixSuffix)
mixfix :: Parser ()
mixfix = genMixfix False
atom :: Parser String
atom = var <|> typefree <|> typevar <|> nameref
-- nameref covers nat and symident keywords
args :: Parser [Token]
args = many $ lexP atom
-- | look for the simp attribute
attributes :: Parser [Bool]
attributes = bracketsP . commalist $
liftM2 (\ n l -> null l && show n == simpS) namerefP args
lessOrEq :: Parser String
lessOrEq = lexS "<" <|> lexS "\\<subseteq>"
classdecl :: Parser [Token]
classdecl = do
n <- nameP
lessOrEq
ns <- commalist namerefP
return $ n : ns
classes :: Parser [[Token]]
classes = lexS classesS >> many1 classdecl
data Typespec = Typespec Token [Token]
typespec :: Parser Typespec
typespec = fmap (flip Typespec []) namerefP <|> do
ns <- parensP (commalist typefreeP) <|> fmap (:[]) typefreeP
n <- namerefP
return $ Typespec n ns
where typefreeP = lexP typefree
optinfix :: Parser ()
optinfix = optional $ parensP infixP
types :: Parser [Typespec]
types = lexS typesS >> many1 (typespec << (lexS "=" >> typeP >> optinfix))
typedecl :: Parser [Typespec]
typedecl = lexS typedeclS >> many1 (typespec << optinfix)
arity :: Parser [Token]
arity = fmap (:[]) namerefP <|> do
ns <- parensP $ commalist namerefP
n <- namerefP
return $ n : ns
data Const = Const Token Token
typeSuffix :: Parser Token
typeSuffix = lexS "::" >> typeP
consts :: Parser [Const]
consts = lexS constsS >> many1 (liftM2 Const nameP (typeSuffix
<< optional mixfix))
vars :: Parser ()
vars = many1 nameP >> optional typeSuffix
andL :: Parser String
andL = lexS andS
structs :: Parser ()
structs = parensP $ structureL << sepBy1 vars andL
constdecl :: Parser [Const]
constdecl = do
n <- nameP
do t <- typeSuffix << optional mixfix
return [Const n t]
<|> (lexS "where" >> return [])
<|> (mixfix >> return [])
constdef :: Parser ()
constdef = optional thmdecl << prop
constdefs :: Parser [[Const]]
constdefs = lexS constdefsS >> optional structs >>
many1 (optionL constdecl << constdef)
-- | the sentence name plus simp attribute (if True)
data SenDecl = SenDecl Token Bool
emptySen :: SenDecl
emptySen = SenDecl (mkSimpleId "") False
optAttributes :: Parser Bool
optAttributes = fmap or $ optionL attributes
axmdecl :: Parser SenDecl
axmdecl = liftM2 SenDecl nameP optAttributes << lexS ":"
prop :: Parser Token
prop = lexP $ reserved isaKeywords term
data Axiom = Axiom SenDecl Token
axiomsP :: Parser [Axiom]
axiomsP = many1 (liftM2 Axiom axmdecl prop)
defs :: Parser [Axiom]
defs = lexS defsS >> optionL (parensP $ lexS "overloaded") >>
axiomsP
axioms :: Parser [Axiom]
axioms = lexS axiomsS >> axiomsP
thmbind :: Parser SenDecl
thmbind = liftM2 SenDecl nameP optAttributes
<|> (attributes >> return emptySen)
selection :: Parser [()]
selection = parensP . commalist $
natP >> optional (lexS "-" >> optional natP)
where natP = lexP nat
thmref :: Parser Token
thmref = namerefP << (optional selection >> optionL attributes)
thmrefs :: Parser [Token]
thmrefs = many1 thmref
thmdef :: Parser SenDecl
thmdef = try $ thmbind << lexS "="
thmdecl :: Parser SenDecl
thmdecl = try $ thmbind << lexS ":"
theorems :: Parser [[Token]]
theorems = (lexS theoremsS <|> lexS lemmasS)
>> optional locale
>> sepBy1 (optional thmdef >> thmrefs) andL
proppat :: Parser [Token]
proppat = parensP . many1 $ lexP term
data Goal = Goal SenDecl [Token]
props :: Parser Goal
props = liftM2 Goal (option emptySen thmdecl)
$ many1 (prop << optional proppat)
goal :: Parser [Goal]
goal = sepBy1 props andL
lemma :: Parser [Goal]
lemma = choice (map lexS [lemmaS, theoremS, corollaryS])
>> optional locale >> goal -- longgoal ignored
instanceP :: Parser Token
instanceP =
lexS instanceS >> namerefP <<
((lexS "::" << arity) <|> (lessOrEq << namerefP))
axclass :: Parser [Token]
axclass = lexS axclassS >> classdecl << many (axmdecl >> prop)
mltext :: Parser Token
mltext = lexS mlS >> lexP isaText
cons :: Parser [Token]
cons = nameP <:> many typeP << optional mixfix
data Dtspec = Dtspec Typespec [[Token]]
dtspec :: Parser Dtspec
dtspec = do
optional $ try parname
t <- typespec
optinfix
lexS "="
cs <- sepBy1 cons $ lexS "|"
return $ Dtspec t cs
datatype :: Parser [Dtspec]
datatype = lexS datatypeS >> sepBy1 dtspec andL
-- allow '.' sequences in unknown parts
anyP :: Parser String
anyP = atom <|> many1 (char '.')
-- allow "and", etc. in unknown parts
unknown :: Parser ()
unknown = skipMany1 $ (lexP (reserved usedTopKeys anyP) >> return [()])
<|> recordP cus
<|> parensP cus
<|> bracketsP cus
<|> bracesP cus
where cus = commalist (unknown <|> forget (lexP anyP))
data BodyElem = Axioms [Axiom]
| Goals [Goal]
| Consts [Const]
| Datatype [Dtspec]
| Ignored
ignore :: Functor f => f a -> f BodyElem
ignore = fmap $ const Ignored
theoryBody :: Parser [BodyElem]
theoryBody = many $
ignore typedecl
<|> ignore types
<|> fmap Datatype datatype
<|> fmap Consts consts
<|> fmap (Consts . concat) constdefs
<|> fmap Axioms defs
<|> ignore classes
<|> ignore markupP
<|> ignore theorems
<|> fmap Axioms axioms
<|> ignore instanceP
<|> fmap Goals lemma
<|> ignore axclass
<|> ignore mltext
<|> ignore (choice (map lexS ignoredKeys) >> skipMany unknown)
<|> ignore unknown
data SimpValue a = SimpValue { hasSimp :: Bool, simpValue :: a }
instance Show a => Show (SimpValue a) where
show (SimpValue _ a) = show a
instance Pretty a => Pretty (SimpValue a) where
pretty (SimpValue _ a) = pretty a
instance Eq a => Eq (SimpValue a) where
SimpValue _ a == SimpValue _ b = a == b
-- | The axioms, goals, constants and data types of a theory
data Body = Body
{ axiomsF :: Map.Map Token (SimpValue Token)
, goalsF :: Map.Map Token (SimpValue [Token])
, constsF :: Map.Map Token Token
, datatypesF :: Map.Map Token ([Token], [[Token]])
} deriving Show
addAxiom :: Axiom -> Map.Map Token (SimpValue Token)
-> Map.Map Token (SimpValue Token)
addAxiom (Axiom (SenDecl n b) a) = Map.insert n (SimpValue b a)
addGoal :: Goal -> Map.Map Token (SimpValue [Token])
-> Map.Map Token (SimpValue [Token])
addGoal (Goal (SenDecl n b) a) = Map.insert n (SimpValue b a)
addConst :: Const -> Map.Map Token Token -> Map.Map Token Token
addConst (Const n a) = Map.insert n a
addDatatype :: Dtspec -> Map.Map Token ([Token], [[Token]])
-> Map.Map Token ([Token], [[Token]])
addDatatype (Dtspec (Typespec n ps) a) = Map.insert n (ps, a)
emptyBody :: Body
emptyBody = Body
{ axiomsF = Map.empty
, goalsF = Map.empty
, constsF = Map.empty
, datatypesF = Map.empty
}
concatBodyElems :: BodyElem -> Body -> Body
concatBodyElems x b = case x of
Axioms l -> b { axiomsF = foldr addAxiom (axiomsF b) l }
Goals l -> b { goalsF = foldr addGoal (goalsF b) l }
Consts l -> b { constsF = foldr addConst (constsF b) l }
Datatype l -> b { datatypesF = foldr addDatatype (datatypesF b) l }
Ignored -> b
-- | parses a complete isabelle theory file, but skips i.e. proofs
parseTheory :: Parser (TheoryHead, Body)
parseTheory = pair
theoryHead (fmap (foldr concatBodyElems emptyBody) theoryBody)
<< lexS endS << eof
{- | Check that constants and data type are unchanged and that no axioms
was added and no theorem deleted. -}
compatibleBodies :: Body -> Body -> [Diagnosis]
compatibleBodies b1 b2 =
diffMap "axiom" LT (axiomsF b2) (axiomsF b1)
++ diffMap "constant" EQ (constsF b2) (constsF b1)
++ diffMap "datatype" EQ (datatypesF b2) (datatypesF b1)
++ diffMap "goal" GT (goalsF b2) (goalsF b1)
warnSimpAttr :: Body -> [Diagnosis]
warnSimpAttr =
map ( \ a -> Diag Warning
("use 'declare " ++ tokStr a
++ " [simp]' for proper Isabelle proof details") $ tokPos a)
. Map.keys . Map.filter hasSimp . axiomsF
diffMap :: (Ord a, Pretty a, GetRange a, Eq b, Show b)
=> String -> Ordering -> Map.Map a b -> Map.Map a b -> [Diagnosis]
diffMap msg o m1 m2 =
let k1 = Map.keys m1
k2 = Map.keys m2
kd21 = k2 \\ k1
kd12 = k1 \\ k2
in if k1 == k2 then
map ( \ (k, a) -> mkDiag Error
(msg ++ " entry " ++ show a ++ " was changed for: ") k)
$ Map.toList $
Map.differenceWith ( \ a b -> if a == b then Nothing else
Just a) m1 m2
else let b = case o of
EQ -> null kd21
GT -> False
LT -> True
kd = if b then kd12 else kd21
in map (mkDiag Error
$ msg ++ " entry illegally " ++
if b then "added" else "deleted") kd