Helper.hs revision bbfe0a12ab370fc2d43b60caa7a179fcf24af9b5
{- |
Module : $Header$
Description : Helper functions for dealing with terms (mainly for pretty printing which is directly adapted from hollight)
Copyright : (c) Jonathan von Schroeder, DFKI GmbH 2010
License : GPLv2 or higher, see LICENSE.txt
Maintainer : jonathan.von_schroeder@dfki.de
Stability : experimental
Portability : portable
-}
module HolLight.Helper where
import Data.Maybe (fromJust,isJust,maybe,catMaybes)
import HolLight.Term
import Data.List (union,(\\))
import Common.Doc
fromRight e = case e of
Right t -> t
Left _ -> error "fromRight"
is_prefix tm = case tm of
Var _ _ (HolTermInfo (Prefix,_)) -> True
Const _ _ (HolTermInfo (Prefix,_)) -> True
_ -> False
pp_print_type = sot 0
soc sep flag ss = if length ss == 0 then empty
else let s = foldr1 (\s1 s2 -> hcat[s1,text sep,s2]) ss
in if flag then parens s else s
sot pr ty = case (dest_vartype ty,dest_type ty) of {- exactly one of these is not Nothing-}
(Just vtype,_) -> text vtype
(_,Just t) -> case t of
(con,[]) -> text con
("fun",[ty1,ty2]) -> soc "->" (pr > 0) [sot 1 ty1,sot 0 ty2]
("sum",[ty1,ty2]) -> soc "+" (pr > 2) [sot 3 ty1,sot 2 ty2]
("prod",[ty1,ty2]) -> soc "#" (pr > 4) [sot 5 ty1,sot 4 ty2]
("cart",[ty1,ty2]) -> soc "^" (pr > 6) [sot 6 ty1,sot 7 ty2]
(con,args) -> hcat [soc "," True (map (sot 0) args),text con]
_ -> empty {- doesn't happen -}
{- lib.ml -}
rev_assocd a l d = case l of
[] -> d
(x,y):t -> if y == a then x
else rev_assocd a t d
{- fusion.ml -}
dest_var v = case v of
Var s ty _ -> Just (s,ty)
_ -> Nothing
is_var v = isJust (dest_var v)
frees tm = case tm of
Var _ _ _ -> [tm]
Const _ _ _ -> []
Abs bv bod -> (frees bod) \\ [bv]
Comb s t -> union (frees s) (frees t)
vfree_in v tm = case tm of
Abs bv bod -> v /= bv && vfree_in v bod
Comb s t -> vfree_in v s || vfree_in v t
_ -> tm == v
variant avoid v = if not (any (vfree_in v) avoid) then Just v
else case v of
Var s ty p -> variant avoid (Var (s++"'") ty p)
_ -> Nothing
vsubst =
let vsubst' ilist tm = case tm of
Var _ _ _ -> Just $ rev_assocd tm ilist tm
Const _ _ _ -> Just tm
Comb s t -> case (vsubst' ilist s,vsubst ilist t) of
(Just s',Just t') -> if (s'==s && t'==t)
then Just tm
else Just (Comb s' t')
_ -> Nothing
Abs v s -> let ilist' = filter (\ (t,x) -> x /= v)
ilist
in if ilist' == [] then Just tm
else case vsubst ilist' s of
Just s' -> if s' == s
then Just tm
else if any (\ (t,x) -> vfree_in v t
&& vfree_in x s)
ilist'
then case variant [s'] v of
Just v' -> case vsubst
((v',v):ilist') s of
Just t' -> Just (Abs v' t')
_ -> Nothing
_ -> Nothing
else Just (Abs v s')
_ -> Nothing
in \ theta ->
if theta == [] then (\ tm -> Just tm) else
if all (\ (t,x) -> case (type_of t, dest_var x) of
(Just t',Just (_,x')) -> t' == x'
_ -> False) theta then vsubst theta
else (\ _ -> Nothing)
dest_comb c = case c of
Comb f x -> Just (f,x)
_ -> Nothing
is_comb c = isJust (dest_comb c)
dest_const c = case c of
Const s ty _ -> Just (s,ty)
_ -> Nothing
is_const c = isJust (dest_const c)
dest_abs a = case a of
Abs v b -> Just (v,b)
_ -> Nothing
is_abs a = isJust (dest_abs a)
rator tm = maybe Nothing (Just . fst) (dest_comb tm)
rand tm = maybe Nothing (Just . snd) (dest_comb tm)
splitlist dest x = case dest x of
Just (l,r) -> let (ls,res) = splitlist dest r
in (l:ls,res)
_ -> ([],x)
rev_splitlist dest x =
let rsplist ls x' = case dest x' of
Just (l,r) -> rsplist (r:ls) l
_ -> (x',ls)
in rsplist [] x
type_of tm = case tm of
Var _ ty _ -> Just ty
Const _ ty _ -> Just ty
Comb s _ -> case type_of s of
Just t -> case dest_type t of
Just (_,x:x1:xs) -> Just x1
_ -> Nothing
_ -> Nothing
Abs (Var _ ty _) t -> case type_of t of
Just t' -> Just (TyApp "fun" [ty,t'])
_ -> Nothing
_ -> Nothing
dest_type a = case a of
TyApp s ty -> Just (s,ty)
_ -> Nothing
dest_vartype t = case t of
TyVar s -> Just s
_ -> Nothing
type_subst i ty = case ty of
TyApp tycon args -> let args' = map (type_subst i) args
in if args' == args then ty else TyApp tycon args'
_ -> rev_assocd ty i ty
mk_eq (l,r) = case (type_of l,mk_const ("=",[])) of
(Just ty,Just eq) -> case inst [(ty,TyVar "A")] eq of
Right eq_tm -> case mk_comb (eq_tm,l) of
Just m1 -> mk_comb (m1,r)
_ -> Nothing
_ -> Nothing
_ -> Nothing
inst =
let inst' env tyin tm = case tm of
Var n ty at -> let ty' = type_subst tyin ty
in let tm' = if ty' == ty then tm
else (Var n ty' at)
in if (rev_assocd tm' env tm) == tm
then Right tm'
else Left tm'
Const c ty at -> let ty' = type_subst tyin ty
in if ty' == ty
then Right tm
else Right (Const c ty' at)
Comb f x -> case (inst' env tyin f,
inst' env tyin x) of
(Right f',Right x') -> if f' == f
&& x' == x then Right tm
else Right (Comb f' x')
(Left c, _) -> Left c
(_,Left c) -> Left c
Abs y t -> case inst' [] tyin y of
Right y' -> let env' = (y,y'):env
in case inst' env' tyin t of
Right t' -> if y' == y &&
t' == t
then Right tm
else Right (Abs y' t')
Left w' -> if w' /= y'
then Left w'
else let ifrees = map (fromRight .
(inst' [] tyin))
(frees t) in
case variant ifrees y' of
Just y'' ->
case (dest_var y'',dest_var y) of
(Just (v1,_),Just (_,v2)) ->
let z = (Var v1 v2 (HolTermInfo (Normal,Nothing)))
in case vsubst [(z,y)] t of
Just s -> inst' env tyin
(Abs z s)
_ -> Left w'
_ -> Left w'
_ -> Left w'
_ -> Left tm
in (\tyin -> if tyin == [] then (\tm -> Right tm) else inst' [] tyin)
mk_comb (f,a) = case type_of f of
Just (TyApp "fun" [ty,_]) -> case type_of a of
Just t -> if ty == t then Just (Comb f a) else Nothing
_ -> Nothing
_ -> Nothing
eq_type = TyApp "fun" [
TyVar "A",
TyApp "fun" [
TyVar "A",
TyApp "bool" []
]]
mk_const (name,theta) = if name == "="
then Just (Const name
(type_subst theta eq_type)
(HolTermInfo ((InfixR 12),Nothing)))
else Nothing
{- basics.ml -}
dest_binder s tm = case tm of
Comb (Const s' _ _) (Abs x t) ->
if (s'==s) then Just (x,t)
else Nothing
_ -> Nothing
dest_exists = dest_binder "?"
strip_exists = splitlist dest_exists
dest_forall = dest_binder "!"
strip_forall = splitlist dest_forall
strip_comb = rev_splitlist dest_comb
body tm = case dest_abs tm of
Just (_,ret) -> Just ret
_ -> Nothing
dest_numeral tm =
let dest_num tm = case dest_const tm of
Just ("_0",_) -> Just (toInteger 0)
_ -> case dest_comb tm of
Just (l,r) -> case dest_num r of
Just i ->
let n = (toInteger 2) * i
in case dest_const l of
Just ("BIT0",_) -> Just n
Just ("BIT1",_) -> Just (n
+ (toInteger 1))
_ -> Nothing
_ -> Nothing
_ -> Nothing
in case dest_comb tm of
Just (l,r) -> case dest_const l of
Just ("NUMERAL",_) -> dest_num r
_ -> Nothing
_ -> Nothing
dest_binary' s tm = case tm of
Comb (Comb (Const s' _ _) l) r -> if s' == s then Just (l,r)
else Nothing
_ -> Nothing
dest_cons = dest_binary' "CONS"
dest_list tm = let (tms,nil) = splitlist dest_cons tm
in case dest_const nil of
Just ("NIL",_) -> Just tms
_ -> Nothing
dest_gabs tm =
let dest_geq = dest_binary' "GEQ"
in if is_abs tm then dest_abs tm
else case dest_comb tm of
Just (l,r) -> case dest_const l of
Just ("GABS",_) -> case body r of
Just b -> case dest_geq(snd(strip_forall b)) of
Just (ltm,rtm) -> case rand ltm of
Just r -> Just (r,rtm)
_ -> Nothing
_ -> Nothing
_ -> Nothing
_ -> Nothing
_ -> Nothing
is_gabs tm = isJust (dest_gabs tm)
strip_gabs = splitlist dest_gabs
dest_fun_ty ty = case ty of
TyApp "fun" [ty1,ty2] -> Just (ty1,ty2)
_ -> Nothing
dest_let tm = let (l,aargs) = strip_comb tm
in case dest_const l of
Just ("LET",_) ->
let (vars,lebod) = strip_gabs (head aargs)
in let eqs = zip vars (tail aargs)
in case dest_comb lebod of
Just (le,bod) -> case dest_const le of
Just ("LET_END",_) -> Just (eqs,bod)
_ -> Nothing
_ -> Nothing
_ -> Nothing
{- printer.ml -}
name_of tm = case tm of
Var x ty _ -> x
Const x ty _ -> x
_ -> ""
{- printer.ml - pp_print_term -}
reverse_interface (s,tm) = case tm of
Var s' _ ti -> case ti of
HolTermInfo (_,Just (s'',pt)) -> (s'',Just pt)
_ -> (s,Nothing)
Const s' _ ti -> case ti of
HolTermInfo (_,Just (s'',pt)) -> (s'',Just pt)
_ -> (s,Nothing)
_ -> (s,Nothing)
dest_binary c tm = case (dest_comb tm) of {- original name: DEST_BINARY -}
Just (il,r) -> case (dest_comb il) of
Just (i,l) -> if (i == c) ||
(is_const i && is_const c &&
(fst(reverse_interface((fst(fromJust(dest_const i)),i)))
== fst(reverse_interface((fst(fromJust(dest_const c)),i)))))
then Just (l,r)
else Nothing
_ -> Nothing
_ -> Nothing
powerof10 n = (10*(div n 10)) == n
bool_of_term t = case t of
Const "T" _ _ -> Just True
Const "F" _ _ -> Just False
_ -> Nothing
code_of_term t =
let (f,tms) = strip_comb t in
if not(is_const f && fst(fromJust(dest_const f)) == "ASCII")
|| not(length tms == 8)
then Nothing
else let bools = map bool_of_term (reverse tms)
in if length (filter ((==)Nothing) bools) == 0 then
Just (foldr (\b f -> if b then 1 + 2 * f else 2 * f)
0 (catMaybes bools))
else Nothing
rand_rator v = case rator v of
Just v1 -> rand v1
_ -> Nothing
dest_clause tm = case maybe Nothing (Just . strip_exists)
(maybe Nothing body (body tm)) of
Just (_,pbod) -> let (s,args) = strip_comb pbod
in case (name_of s,length args) of
("_UNGUARDED_PATTERN",2) ->
case (rand_rator (args!!0),
rand_rator (args!!1)) of
(Just _1,Just _2) -> Just [_1,_2]
_ -> Nothing
("_GUARDED_PATTERN",3) ->
case (rand_rator (args!!0),
rand_rator (args!!2)) of
(Just _1, Just _3) -> Just [_1,args!!1,_3]
_ -> Nothing
_ -> Nothing
_ -> Nothing
dest_clauses tm = let (s,args) = strip_comb tm
in if name_of s == "_SEQPATTERN" && length args == 2
then case dest_clauses (args!!1) of
Just cs -> case (dest_clause (args!!0)) of
Just c -> Just (c:cs)
_ -> Nothing
_ -> Nothing
else case dest_clause tm of
Just c -> Just [c]
_ -> Nothing
aright tm = case tm of
Var _ _ (HolTermInfo ((InfixR _),_)) -> True
Const _ _ (HolTermInfo ((InfixR _),_)) -> True
_ -> False
get_prec tm = case tm of
Var _ _ (HolTermInfo ((InfixR i),_)) -> i
Const _ _ (HolTermInfo ((InfixR i),_)) -> i
_ -> 0
parses_as_binder tm = case tm of
Var _ _ (HolTermInfo (Binder,_)) -> True
Const _ _ (HolTermInfo (Binder,_)) -> True
_ -> False
can_get_infix_status tm = case tm of
Var _ _ (HolTermInfo (InfixR _,_)) -> True
Var _ _ (HolTermInfo (InfixL _,_)) -> True
Const _ _ (HolTermInfo (InfixR _,_)) -> True
Const _ _ (HolTermInfo (InfixL _,_)) -> True
_ -> False