Cross Reference: /hets/Hets_input_examples/simpleSentences.het
simpleSentences.het revision 81f49ee02aaa3bc870401f8883bf52742eb3ea7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
logic Hybrid
%% Page 66, Brauner's book on proof theory
%% some axioms
spec Dist1 =
preds p,q : ()
modality M
. [M] (p /\ q) => ([M]p /\ [M]q) %implied
end
spec Test =
preds p,q : ()
nominal N
. (p /\ q)
. @N p %implied
spec Dist2 =
preds p,q : ()
nominal N
. @N (p /\ q) => (@N p /\ @N q) %implied
end
spec Ref1 =
nominal N
. @N (Here N) %implied
end
spec Ref2 =
. !X (Here X) %implied
end
spec Scope =
preds p : ()
nominals A,B
. (@A @B p) <=> (@B p) %implied
end
spec Intro =
preds p : ()
nominal A
. (Here A /\ p) => @A p %implied
end