log revision 895a60f3f11b5f1210f146324e9ffe5e1b9c211f
+ for i in '*.thy'
++ basename mrec3_h.thy .thy
+ j=mrec3_h
+ isabelle -q -e 'use_thy "mrec3_h";print_depth 300;theory "mrec3_h";axioms_of it;quit();'
val it = false : bool
ML> val commit = fn : unit -> bool
Loading theory "HsHOL" (required by "mrec3_h")
Loading theory "mrec3_h"
structure Header :
sig val record : string -> unit
val initialize : string list -> unit end
val it = () : unit
Proofs for datatype(s) "Prelude_Boolx"
Constructing representing sets ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the induction rule ...
Proving isomorphism properties ...
Proving freeness of constructors ...
Proving induction rule for datatypes ...
Proving case distinction theorems ...
Constructing primrec combinators ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules ...
Proving termination and uniqueness of primrec functions ...
Proving characteristic theorems for primrec combinators ...
Proving characteristic theorems for case combinators ...
Proving equations for case splitting ...
Proving additional theorems for TFL ...
Proving equations for size function ...
Proofs for datatype(s) "Prelude_Natx"
Constructing representing sets ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the induction rule ...
Proving isomorphism properties ...
Proving freeness of constructors ...
Proving induction rule for datatypes ...
Proving case distinction theorems ...
Constructing primrec combinators ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules ...
Proving termination and uniqueness of primrec functions ...
Proving characteristic theorems for primrec combinators ...
Proving characteristic theorems for case combinators ...
Proving equations for case splitting ...
Proving additional theorems for TFL ...
Proving equations for size function ...
Proving equations for primrec function(s) "mrec3_h.map1_Xmap2_X" ...
val it = () : unit
val it = () : unit
val it =
{ProtoPure, Pure, CPure, HOL, Lattice_Locales, Orderings, LOrder, Set,
Typedef, Fun, Product_Type, FixedPoint, Sum_Type, Relation, Record,
Inductive, Transitive_Closure, Wellfounded_Recursion, OrderedGroup,
Ring_and_Field, Nat, NatArith, Datatype_Universe, Datatype, Divides,
Power, Finite_Set, Wellfounded_Relations, Equiv_Relations, IntDef,
Numeral, IntArith, SetInterval, Recdef, IntDiv, NatBin, NatSimprocs,
Presburger, Relation_Power, Parity, GCD, Binomial, PreList, List, Map,
Refute, SAT, Hilbert_Choice, Infinite_Set, Extraction, Reconstruction,
Main, HsHOL, mrec3_h} : theory
val it =
[("mrec3_h.map1_def","map1 == %x. fst (map1_Xmap2_X x)"),
("mrec3_h.map2_def","map2 == %x. snd (map1_Xmap2_X x)"),
"Sx ?x1.0 ==
Abs_Prelude_Natx (In1 (In0 (??.Datatype_Universe.Leaf (Inr ?x1.0))))"),
("mrec3_h.Prelude_Natx.Zx_def","Zx == Abs_Prelude_Natx (In0 arbitrary)"),
"SSx ?x2.0 ?x1.0 ==
Abs_Prelude_Natx
(In1
(In1
(Scons (Rep_Prelude_Natx ?x2.0)
(??.Datatype_Universe.Leaf (Inl ?x1.0)))))"),
"Minx == Abs_Prelude_Boolx (In0 arbitrary)"),
"Plusx == Abs_Prelude_Boolx (In1 arbitrary)"),
"EX x. x : Prelude_Natx_rep_set
==> type_definition Rep_Prelude_Natx Abs_Prelude_Natx
Prelude_Natx_rep_set"),
"EX x. x : Prelude_Boolx_rep_set
==> type_definition Rep_Prelude_Boolx Abs_Prelude_Boolx
Prelude_Boolx_rep_set"),
"Prelude_Natx_rec ?f1.0 ?f2.0 ?f3.0 ==
%x. THE y. (x, y) : Prelude_Natx_rec_set ?f1.0 ?f2.0 ?f3.0"),
"Prelude_Natx_case ?f1.0 ?f2.0 ?f3.0 ==
Prelude_Natx_rec ?f1.0 ?f2.0 (%x1 x2 x3. ?f3.0 x1 x2)"),
"size == Prelude_Natx_rec 0 (%x. 0) (%x xa xb. xb + Suc 0)"),
"Prelude_Boolx_rec ?f1.0 ?f2.0 ==
%x. THE y. (x, y) : Prelude_Boolx_rec_set ?f1.0 ?f2.0"),
"Prelude_Boolx_case ?f1.0 ?f2.0 == Prelude_Boolx_rec ?f1.0 ?f2.0"),
"size == Prelude_Boolx_rec 0 0"),
"Prelude_Natx_rec_set ?f1.0 ?f2.0 ?f3.0 ==
lfp
(%S.
{x.
x = (Zx, ?f1.0) |
(EX x1. x = (Sx x1, ?f2.0 x1)) |
(EX x1 x2 y1. x = (SSx x2 x1, ?f3.0 x2 x1 y1) & (x2, y1) : S)})"),
"Prelude_Natx_rep_set ==
lfp
(%S.
{x.
x = In0 arbitrary |
(EX x1. x = In1 (In0 (??.Datatype_Universe.Leaf (Inr x1)))) |
(EX x1 x2.
x = In1 (In1 (Scons x2 (??.Datatype_Universe.Leaf (Inl x1)))) &
x2 : S)})"),
"Prelude_Boolx_rec_set ?f1.0 ?f2.0 ==
lfp (%S. {x. x = (Minx, ?f1.0) | x = (Plusx, ?f2.0)})"),
"Prelude_Boolx_rep_set ==
lfp (%S. {x. x = In0 arbitrary | x = In1 arbitrary})"),
"map1_Xmap2_X ==
Prelude_Natx_rec (%f. Sx (f 0), %w f. Zx)
(%pX1. (%f. Sx (f pX1), %w f. Sx (pX1 + 1)))
(%pX1 pX2 pX1a.
(snd pX1a pX2, %w f. if pX2 = Minx then SSx pX1 w else fst pX1a f))")]
: (string * thm) list
+ for i in '*.thy'
++ basename mrec_h.thy .thy
+ j=mrec_h
+ isabelle -q -e 'use_thy "mrec_h";print_depth 300;theory "mrec_h";axioms_of it;quit();'
val it = false : bool
ML> val commit = fn : unit -> bool
Loading theory "HsHOL" (required by "mrec_h")
Loading theory "mrec_h"
structure Header :
sig val record : string -> unit
val initialize : string list -> unit end
val it = () : unit
Proofs for datatype(s) "Prelude_Natx"
Constructing representing sets ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the induction rule ...
Proving isomorphism properties ...
Proving freeness of constructors ...
Proving induction rule for datatypes ...
Proving case distinction theorems ...
Constructing primrec combinators ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules ...
Proving termination and uniqueness of primrec functions ...
Proving characteristic theorems for primrec combinators ...
Proving characteristic theorems for case combinators ...
Proving equations for case splitting ...
Proving additional theorems for TFL ...
Proving equations for size function ...
Proving equations for primrec function(s) "mrec_h.fun1_Xfun2_X" ...
val it = () : unit
val it = () : unit
val it =
{ProtoPure, Pure, CPure, HOL, Lattice_Locales, Orderings, LOrder, Set,
Typedef, Fun, Product_Type, FixedPoint, Sum_Type, Relation, Record,
Inductive, Transitive_Closure, Wellfounded_Recursion, OrderedGroup,
Ring_and_Field, Nat, NatArith, Datatype_Universe, Datatype, Divides,
Power, Finite_Set, Wellfounded_Relations, Equiv_Relations, IntDef,
Numeral, IntArith, SetInterval, Recdef, IntDiv, NatBin, NatSimprocs,
Presburger, Relation_Power, Parity, GCD, Binomial, PreList, List, Map,
Refute, SAT, Hilbert_Choice, Infinite_Set, Extraction, Reconstruction,
Main, HsHOL, mrec_h} : theory
val it =
[("mrec_h.fun1_def","fun1 == %x. fst (fun1_Xfun2_X x)"),
("mrec_h.fun2_def","fun2 == %x. snd (fun1_Xfun2_X x)"),
"Sx ?x2.0 ?x1.0 ==
Abs_Prelude_Natx
(In1 (Scons (??.Datatype_Universe.Leaf ?x2.0) (Rep_Prelude_Natx ?x1.0)))"),
("mrec_h.Prelude_Natx.Zx_def","Zx == Abs_Prelude_Natx (In0 arbitrary)"),
"EX x. x : Prelude_Natx_rep_set
==> type_definition Rep_Prelude_Natx Abs_Prelude_Natx
Prelude_Natx_rep_set"),
"Prelude_Natx_rec ?f1.0 ?f2.0 ==
%x. THE y. (x, y) : Prelude_Natx_rec_set ?f1.0 ?f2.0"),
"Prelude_Natx_case ?f1.0 ?f2.0 ==
Prelude_Natx_rec ?f1.0 (%x1 x2 x3. ?f2.0 x1 x2)"),
"size == Prelude_Natx_rec 0 (%x xa xb. xb + Suc 0)"),
"Prelude_Natx_rec_set ?f1.0 ?f2.0 ==
lfp
(%S.
{x.
x = (Zx, ?f1.0) |
(EX x1 x2 y1. x = (Sx x2 x1, ?f2.0 x2 x1 y1) & (x1, y1) : S)})"),
"Prelude_Natx_rep_set ==
lfp
(%S.
{x.
x = In0 arbitrary |
(EX x1 x2.
x = In1 (Scons (??.Datatype_Universe.Leaf x2) x1) & x1 : S)})"),
"fun1_Xfun2_X ==
Prelude_Natx_rec ((Zx, 0), 0)
(%pX1 pX2 pX2a.
((Sx pX1 (fst (fst pX2a)), pX1 * snd pX2a), snd (fst pX2a) + pX1))")]
: (string * thm) list
+ for i in '*.thy'
++ basename wcard_h.thy .thy
+ j=wcard_h
+ isabelle -q -e 'use_thy "wcard_h";print_depth 300;theory "wcard_h";axioms_of it;quit();'
val it = false : bool
ML> val commit = fn : unit -> bool
Loading theory "HsHOL" (required by "wcard_h")
Loading theory "wcard_h"
structure Header :
sig val record : string -> unit
val initialize : string list -> unit end
val it = () : unit
Proofs for datatype(s) "Prelude_Boolx"
Constructing representing sets ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the induction rule ...
Proving isomorphism properties ...
Proving freeness of constructors ...
Proving induction rule for datatypes ...
Proving case distinction theorems ...
Constructing primrec combinators ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules ...
Proving termination and uniqueness of primrec functions ...
Proving characteristic theorems for primrec combinators ...
Proving characteristic theorems for case combinators ...
Proving equations for case splitting ...
Proving additional theorems for TFL ...
Proving equations for size function ...
Proofs for datatype(s) "Prelude_Natx"
Constructing representing sets ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the induction rule ...
Proving isomorphism properties ...
Proving freeness of constructors ...
Proving induction rule for datatypes ...
Proving case distinction theorems ...
Constructing primrec combinators ...
Proving monotonicity ...
Proving the introduction rules ...
Proving the elimination rules ...
Proving termination and uniqueness of primrec functions ...
Proving characteristic theorems for primrec combinators ...
Proving characteristic theorems for case combinators ...
Proving equations for case splitting ...
Proving additional theorems for TFL ...
Proving equations for size function ...
val it = () : unit
val it = () : unit
val it =
{ProtoPure, Pure, CPure, HOL, Lattice_Locales, Orderings, LOrder, Set,
Typedef, Fun, Product_Type, FixedPoint, Sum_Type, Relation, Record,
Inductive, Transitive_Closure, Wellfounded_Recursion, OrderedGroup,
Ring_and_Field, Nat, NatArith, Datatype_Universe, Datatype, Divides,
Power, Finite_Set, Wellfounded_Relations, Equiv_Relations, IntDef,
Numeral, IntArith, SetInterval, Recdef, IntDiv, NatBin, NatSimprocs,
Presburger, Relation_Power, Parity, GCD, Binomial, PreList, List, Map,
Refute, SAT, Hilbert_Choice, Infinite_Set, Extraction, Reconstruction,
Main, HsHOL, wcard_h} : theory
val it =
[("wcard_h.map1_def",
"map1 ==
%x f. case x of Zx => Sx (f 0) | Sx pX1 => Sx (f pX1) | SSx pX2 pX1 => x"),
"Sx ?x1.0 ==
Abs_Prelude_Natx (In1 (In0 (??.Datatype_Universe.Leaf (Inr ?x1.0))))"),
("wcard_h.Prelude_Natx.Zx_def","Zx == Abs_Prelude_Natx (In0 arbitrary)"),
"SSx ?x2.0 ?x1.0 ==
Abs_Prelude_Natx
(In1
(In1
(Scons (Rep_Prelude_Natx ?x2.0)
(??.Datatype_Universe.Leaf (Inl ?x1.0)))))"),
"Minx == Abs_Prelude_Boolx (In0 arbitrary)"),
"Plusx == Abs_Prelude_Boolx (In1 arbitrary)"),
"EX x. x : Prelude_Natx_rep_set
==> type_definition Rep_Prelude_Natx Abs_Prelude_Natx
Prelude_Natx_rep_set"),
"EX x. x : Prelude_Boolx_rep_set
==> type_definition Rep_Prelude_Boolx Abs_Prelude_Boolx
Prelude_Boolx_rep_set"),
"Prelude_Natx_rec ?f1.0 ?f2.0 ?f3.0 ==
%x. THE y. (x, y) : Prelude_Natx_rec_set ?f1.0 ?f2.0 ?f3.0"),
"Prelude_Natx_case ?f1.0 ?f2.0 ?f3.0 ==
Prelude_Natx_rec ?f1.0 ?f2.0 (%x1 x2 x3. ?f3.0 x1 x2)"),
"size == Prelude_Natx_rec 0 (%x. 0) (%x xa xb. xb + Suc 0)"),
"Prelude_Boolx_rec ?f1.0 ?f2.0 ==
%x. THE y. (x, y) : Prelude_Boolx_rec_set ?f1.0 ?f2.0"),
"Prelude_Boolx_case ?f1.0 ?f2.0 == Prelude_Boolx_rec ?f1.0 ?f2.0"),
"size == Prelude_Boolx_rec 0 0"),
"Prelude_Natx_rec_set ?f1.0 ?f2.0 ?f3.0 ==
lfp
(%S.
{x.
x = (Zx, ?f1.0) |
(EX x1. x = (Sx x1, ?f2.0 x1)) |
(EX x1 x2 y1. x = (SSx x2 x1, ?f3.0 x2 x1 y1) & (x2, y1) : S)})"),
"Prelude_Natx_rep_set ==
lfp
(%S.
{x.
x = In0 arbitrary |
(EX x1. x = In1 (In0 (??.Datatype_Universe.Leaf (Inr x1)))) |
(EX x1 x2.
x = In1 (In1 (Scons x2 (??.Datatype_Universe.Leaf (Inl x1)))) &
x2 : S)})"),
"Prelude_Boolx_rec_set ?f1.0 ?f2.0 ==
lfp (%S. {x. x = (Minx, ?f1.0) | x = (Plusx, ?f2.0)})"),
"Prelude_Boolx_rep_set ==
lfp (%S. {x. x = In0 arbitrary | x = In1 arbitrary})")]
: (string * thm) list