ZMapArgs.hascasl.output revision 9df7943e174665a367e75714d54b352a3760dd58
free type Tree(a : Type) ::= Leaf (a) |
Node (Tree a) (a) |
EmptyLeaf
free type Nat ::= Zero |
Suc (Nat)
op caseTree : forall a . Tree Nat -> Tree Nat
forall h : Tree Nat; n : Nat; t : Tree Nat
. (op caseTree : Tree Nat -> Tree Nat) (var t : Tree Nat) =
(case (var t : Tree Nat) of
(op EmptyLeaf[Nat] : forall a : Type . Tree a) ->
(op EmptyLeaf[_v17] : forall a : Type . Tree a) |
(op Leaf[Nat] : forall a : Type . a -> Tree a) (var n : Nat) ->
(op EmptyLeaf[_v17] : forall a : Type . Tree a) |
(op Node[Nat] : forall a : Type . Tree a -> a -> Tree a)
(op EmptyLeaf[Nat] : forall a : Type . Tree a)
(var n : Nat)
->
(op EmptyLeaf[_v17] : forall a : Type . Tree a) |
(op Node[Nat] : forall a : Type . Tree a -> a -> Tree a)
((op Node[Nat] : forall a : Type . Tree a -> a -> Tree a)
(var h : Tree Nat)
(var n : Nat))
(var n : Nat)
->
(var h : Tree Nat) |
(op Node[Nat] : forall a : Type . Tree a -> a -> Tree a)
((op Leaf[Nat] : forall a : Type . a -> Tree a) (var n : Nat))
(var n : Nat)
->
(op Leaf[Nat] : forall a : Type . a -> Tree a) (var n : Nat))
%% Type Constructors -----------------------------------------------------
? : +Type -> Type
Logical : Type := ? Unit
Nat
: Type
%[free type Nat
::= Zero : Nat
Suc : Nat -> Nat (Nat)]%
Pred : -Type -> Type := \ a : -Type . a ->? Unit
Tree
: Type -> Type
%[free type Tree(a : Type)
::= Leaf : a -> Tree a (a)
Node : Tree a -> a -> Tree a (Tree a)(a)
EmptyLeaf : Tree a]%
Unit : Type
__*__ : +Type -> +Type -> Type
__*__*__ : +Type -> +Type -> +Type -> Type
__*__*__*__ : +Type -> +Type -> +Type -> +Type -> Type
__*__*__*__*__ : +Type -> +Type -> +Type -> +Type -> +Type -> Type
__-->__ : -Type -> +Type -> Type < (__-->?__, __->__)
__-->?__ : -Type -> +Type -> Type < __->?__
__->__ : -Type -> +Type -> Type < __->?__
__->?__ : -Type -> +Type -> Type
%% Assumptions -----------------------------------------------------------
EmptyLeaf : forall a : Type . Tree a %(construct Tree)%
Leaf : forall a : Type . a -> Tree a %(construct Tree)%
Node : forall a : Type . Tree a -> a -> Tree a %(construct Tree)%
Suc : Nat -> Nat %(construct Nat)%
Zero : Nat %(construct Nat)%
__/\__ : ? Unit * ? Unit ->? Unit %(fun)%
__<=>__ : ? Unit * ? Unit ->? Unit %(fun)%
__=__ : forall a : Type . a * a ->? Unit %(fun)%
__=>__ : ? Unit * ? Unit ->? Unit %(fun)%
__=e=__ : forall a : Type . a * a ->? Unit %(fun)%
__\/__ : ? Unit * ? Unit ->? Unit %(fun)%
__if__ : ? Unit * ? Unit ->? Unit %(fun)%
__when__else__ : forall a : Type . a * ? Unit * a ->? a %(fun)%
bottom : forall a : Type . a %(fun)%
caseTree : Tree Nat -> Tree Nat %(op)%
def__ : forall a : Type . a ->? Unit %(fun)%
false : Unit %(fun)%
not__ : ? Unit ->? Unit %(fun)%
true : Unit %(fun)%
�__ : ? Unit ->? Unit %(fun)%
%% Variables -------------------------------------------------------------
h : Tree Nat
n : Nat
t : Tree Nat
%% Sentences -------------------------------------------------------------
free type Tree(a : Type)
::= Leaf : a -> Tree a (a)
Node : Tree a -> a -> Tree a (Tree a)(a)
EmptyLeaf : Tree a
free type Nat
::= Zero : Nat
Suc : Nat -> Nat (Nat)
caseTree t =
(case t of
EmptyLeaf -> EmptyLeaf |
Leaf n -> EmptyLeaf |
Node EmptyLeaf n -> EmptyLeaf |
Node (Node h n) n -> h |
Node (Leaf n) n -> Leaf n)
%% Diagnostics -----------------------------------------------------------
*** Warning 1.18, missing kind for type variable 'a'
*** Warning 4.23, missing kind for type variable 'a'
*** Warning 4.27-4.44, ignoring unused variable(s)
a in 'Tree Nat -> Tree Nat'
*** Hint 6.9, not a kind 'Tree Nat'
*** Hint 7.9, not a class 'Nat'
*** Hint 7.16, not a kind 'Tree Nat'
*** Hint 10.27, rebound variable 'n'
*** Hint 11.37, rebound variable 'n'
*** Hint 12.33, rebound variable 'h'
*** Hint 12.35, rebound variable 'n'
*** Hint 12.37, rebound variable 'n'
*** Hint 13.33, rebound variable 'n'
*** Hint 13.36, rebound variable 'n'