XUnion.hascasl.output revision eca29a7be76eb73944ec19b06eda3d6a9e6e543d
var S : Type; N : Type; E : Type
type Set : Type -> Type := \ S : Type . S ->? Unit
type Graph : Type -> Type -> Type := \ (N : Type)
(E : Type) . Set N * (E ->? N) * (E ->? N)
op __union__ : forall E : Type; N : Type .
Graph N E * Graph N E -> Graph N E;
__union__, __intersection__, __\\__ : forall S : Type .
Set S * Set S -> Set S
forall g : Graph N E; g' : Graph N E
. (fun __=__[(N ->? Unit) * (E ->? N) * (E ->? N)]
: forall a : Type . a * a ->? Unit)
((op __union__[E; N]
: forall E : Type; N : Type . Graph N E * Graph N E -> Graph N E)
(var g : Graph N E, var g' : Graph N E),
var g : Graph N E)
%% Type Constructors -----------------------------------------------------
E : Type %(var)%
Graph : Type -> Type -> Type := \ (N : Type)(E : Type) . Set N *
(E ->? N) * (E ->? N)
N : Type %(var)%
Pred : Type -> Type := \ a : Type . a ->? Unit
S : Type %(var)%
Set : Type -> Type := \ S : Type . S ->? Unit
Unit : Type := Unit
__*__ : Type+ -> Type+ -> Type
__-->__ : Type- -> Type+ -> Type
__-->?__ : Type- -> Type+ -> Type
__->__ : Type- -> Type+ -> Type
__->?__ : Type- -> Type+ -> Type
%% Assumptions -----------------------------------------------------------
__/\__ : Unit * Unit ->? Unit %(fun)%
__<=>__ : Unit * Unit ->? Unit %(fun)%
__=__ : forall a : Type . a * a ->? Unit %(fun)%
__=>__ : Unit * Unit ->? Unit %(fun)%
__=e=__ : forall a : Type . a * a ->? Unit %(fun)%
__\/__ : Unit * Unit ->? Unit %(fun)%
__\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
__if__ : Unit * Unit ->? Unit %(fun)%
__intersection__ : forall S : Type . Set S * Set S -> Set S %(op)%
__union__ : forall S : Type . Set S * Set S -> Set S %(op)%
: forall E : Type; N : Type .
Graph N E * Graph N E -> Graph N E %(op)%
__when__else__ : forall a : Type . a * Unit * a ->? a %(fun)%
def__ : forall a : Type . a ->? Unit %(fun)%
false : Unit %(fun)%
if__then__else__ : forall a : Type . Unit * a * a ->? a %(fun)%
not__ : Unit ->? Unit %(fun)%
true : Unit %(fun)%
%% Sentences -------------------------------------------------------------
(fun __=__[(N ->? Unit) * (E ->? N) * (E ->? N)]
: forall a : Type . a * a ->? Unit)
((op __union__[E; N]
: forall E : Type; N : Type . Graph N E * Graph N E -> Graph N E)
(var g : Graph N E, var g' : Graph N E),
var g : Graph N E) %()%
%% Diagnostics -----------------------------------------------------------
*** Hint 1.7, is type variable 'S'
*** Hint 1.9, is type variable 'N'
*** Hint 1.11, is type variable 'E'
*** Hint 9.6, no type match for: g
with type: '_var_6 ->? Unit' (2.19)
known types:
'Graph N E'