XUnion.hascasl.output revision 699511266869036921be9c7ae6ac83d1b66ba51d
var S : Type; N : Type; E : Type
type Set : Type -> Type := \ S : Type . S ->? Unit
type Graph : Type -> Type -> Type := \ (N : Type)(E : Type) . Set N
* (E ->? N) * (E ->? N)
op __union__ : Graph N E * Graph N E -> Graph N E;
__union__, __intersection__, __\\__ : Set S * Set S -> Set S
forall g : Graph N E; g' : Graph N E
. (__=__)
(((op __union__[N; E] :
forall N : Type; E : Type . Graph N E * Graph N E -> Graph N E)
(((var g : Graph N E), (var g' : Graph N E))),
(var g : Graph N E)))
%% Type Constructors -----------------------------------------------------
? : +Type -> Type
Graph
: Type -> Type -> Type
:= \ (N : Type)(E : Type) . Set N * (E ->? N) * (E ->? N)
Logical : Type := ? Unit
Pred : -Type -> Type := \ a : -Type . a ->? Unit
Set : Type -> Type := \ S : Type . S ->? Unit
Unit : Type
__*__ : +Type -> +Type -> Type
__*__*__ : +Type -> +Type -> +Type -> Type
__*__*__*__ : +Type -> +Type -> +Type -> +Type -> Type
__*__*__*__*__ : +Type -> +Type -> +Type -> +Type -> +Type -> Type
__-->__ : -Type -> +Type -> Type < (__-->?__, __->__)
__-->?__ : -Type -> +Type -> Type < __->?__
__->__ : -Type -> +Type -> Type < __->?__
__->?__ : -Type -> +Type -> Type
%% Type Variables --------------------------------------------------------
E : Type %(var_3)%
N : Type %(var_2)%
S : Type %(var_1)%
%% Assumptions -----------------------------------------------------------
__/\__ : ? Unit * ? Unit ->? Unit %(fun)%
__<=>__ : ? Unit * ? Unit ->? Unit %(fun)%
__=__ : forall a : Type . a * a ->? Unit %(fun)%
__=>__ : ? Unit * ? Unit ->? Unit %(fun)%
__=e=__ : forall a : Type . a * a ->? Unit %(fun)%
__\/__ : ? Unit * ? Unit ->? Unit %(fun)%
__\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
__if__ : ? Unit * ? Unit ->? Unit %(fun)%
__intersection__ : forall S : Type . Set S * Set S -> Set S %(op)%
__union__
: forall S : Type . Set S * Set S -> Set S %(op)%
: forall N : Type; E : Type . Graph N E * Graph N E -> Graph N E
%(op)%
__when__else__ : forall a : Type . a * ? Unit * a ->? a %(fun)%
bottom : forall a : Type . a %(fun)%
def__ : forall a : Type . a ->? Unit %(fun)%
false : Unit %(fun)%
not__ : ? Unit ->? Unit %(fun)%
true : Unit %(fun)%
�__ : ? Unit ->? Unit %(fun)%
%% Variables -------------------------------------------------------------
g : Graph N E
g' : Graph N E
%% Sentences -------------------------------------------------------------
(__=__)
(((__union__ : Graph N E * Graph N E -> Graph N E) ((g, g')), g))
%% Diagnostics -----------------------------------------------------------
*** Hint 1.7, is type variable 'S'
*** Hint 1.9, is type variable 'N'
*** Hint 1.11, is type variable 'E'
*** Hint 2.12, rebound type variable 'S'
*** Hint 3.14, rebound type variable 'N'
*** Hint 3.16, rebound type variable 'E'
*** Hint 8.11, not a kind 'Graph N E'
*** Hint 8.15, not a kind 'Graph N E'
*** Hint, in type of '((var g : Graph N E), (var g' : Graph N E))'
typename '__->?__'
is not unifiable with type '__*__*__ (Set N)' (8.23)