Prelude.hascasl.output revision b55cf4375478168316b212cbc7d261fb683645ff
%% predefined universe containing all types,
%% superclass of all other classes
class Type < Type
var s : Type; t : Type
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% invisible type "Unit" for formulae
type Unit
%% flat cpo with bottom
%% type aliases
pred true, false : Unit
pred __/\__, __\/__, __=>__, __if__, __<=>__ : Unit * Unit
pred not : Unit
pred __=__ : s * s
%% =e=
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% (builtin) type (constructors)
type __->?__ : -Type -> +Type -> Type
%% nested pairs are different from n-tupels (n > 2)
type __*__ : +Type -> +Type -> Type
%% ...
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% "pred p args = e" abbreviates "op p args :? unit = e"
%% CASL requires "<=>" for pred-defn and disallows "()" as result
op def, tt : Pred s
var x : s
program (op def[s] : forall s : Type . Pred s) = \ (var x : s) . ()
%% def is also total (identical to tt)
program (op tt[s] : forall s : Type . Pred s) = \ (var x : s) . ()
%% tt is total "op tt(x: s): unit = ()"
%% total function type
type __->__ : -Type -> +Type -> Type
type __->__ < __->?__
%% total functions
op __res__ : forall s : Type; t : Type . s * t -> s
= \ ((var x : s), (var y : t)) .! (var x : s) as s
op fst : forall s : Type; t : Type . s * t -> s
= \ ((var x : s), (var y : t)) .! (var x : s) as s
%% trivial because its the strict function property
. __=__
(\ ((var x : s), (var y : t)) . def (x res y),
\ ((var x : s), (var y : t)) . (def y) und (def x))
. __=__
((op fst[_v73; _v71] : forall s : Type; t : Type . s * t -> s),
(op __res__[_v73; _v71] : forall s : Type; t : Type . s * t -> s))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Internal Logic
pred eq : s * s
. __=__
(\ (var x : s)
. (pred eq[s] : forall s : Type . s * s)
((var x : s), (var x : s)),
(op tt[s] : forall s : Type . Pred s))
. __=__
(\ ((var x : s), (var y : s))
. (op __res__[s; Unit] : forall s : Type; t : Type . s * t -> s)
((var x : s),
(pred eq[s] : forall s : Type . s * s) ((var x : s), (var y : s))),
\ ((var x : s), (var y : s))
. (op __res__[s; Unit] : forall s : Type; t : Type . s * t -> s)
((var y : s),
(pred eq[s] : forall s : Type . s * s) ((var x : s), (var y : s))))
%% then %def
%% notation "\ ." abbreviates "\bla:unit."
%% where "bla" is never used, but only "()" instead
%% for type inference
%% an implicit cast from s to ?s of a term "e" yields the term "\ . e"
type s < ? s
%% the cast from ?s to s is still done manually here (for the strict "und")
%% use "And" instead of "und" to avoid cast from "?unit" to "unit"
%% the type instance for the first "eq" should be "?t"
%% this is explicitely enforced by "\ .f(x)"
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Recursion (requires "free type nat ::= 0 | Suc(nat)" and "+"
type nat
class Cpo < Type
{var c : Cpo; pred __<<=__ : c * c; ;
pred isChain : forall c : Cpo . nat -> c
= \ (var s : nat -> c)
. all (\ n : nat . s (n) <<= s (Suc (n))) as Unit;
pred isBound : forall c : Cpo . c * (nat -> c)
= \ ((var x : c), (var s : nat -> c))
. all (\ n : nat . s (n) <<= x) as Unit;
op sup : (nat -> c) ->? c;}
class Pcpo < Cpo
{var p : Pcpo; op bottom : p;}
class instance Flatcpo < Cpo
{var f : Flatcpo;}
var c : Cpo; d : Cpo
type instance __*__ : +Cpo -> +Cpo -> Cpo
var x1 : c; x2 : c; y1 : d; y2 : d
type instance __*__ : +Pcpo -> +Pcpo -> Pcpo
type Unit : Pcpo
%% Pcont
type instance __-->?__ : -Cpo -> +Cpo -> Pcpo
type __-->?__ < __->?__
%% Tcont
type instance __-->__ : -Cpo -> +Cpo -> Cpo
var f : c --> d; g : c --> d
type instance __-->__ : -Cpo -> +Pcpo -> Pcpo
fun Y : (p --> p) --> p
var f : p --> p; x : p
. __=__
((var f : p --> p)
((fun Y[p] : forall p : Pcpo . (p --> p) --> p) (var f : p --> p)),
(fun Y[p] : forall p : Pcpo . (p --> p) --> p) (var f : p --> p))
. __=>__
(__=__ ((var f : p --> p) (var x : p), (var x : p)),
(pred __<<=__[p] : forall c : Cpo . c * c)
((fun Y[p] : forall p : Pcpo . (p --> p) --> p) (var f : p --> p),
(var x : p)))
op undefined : forall p : Pcpo; c : Cpo . c --> p
= (fun Y[c --> p] : forall p : Pcpo . (p --> p) --> p)
(\ (var x' : c --> p) . (var x' : c --> p) as
(c --> p) --> c --> p)
as c --> p
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% user stuff
free type bool ::= true |
false
type bool : Flatcpo
type nat : Flatcpo
%% Classes ---------------------------------------------------------------
Cpo < Type
Flatcpo < Cpo
Pcpo < Cpo
%% Type Constructors -----------------------------------------------------
? : +Type -> Type
Logical : Type := ? Unit
Pred : -Type -> Type := \ a : -Type . a ->? Unit
Unit : (Pcpo, Type)
__*__
: (+Pcpo -> +Pcpo -> Pcpo, +Cpo -> +Cpo -> Cpo,
+Type -> +Type -> Type)
__*__*__ : +Type -> +Type -> +Type -> Type
__*__*__*__ : +Type -> +Type -> +Type -> +Type -> Type
__*__*__*__*__ : +Type -> +Type -> +Type -> +Type -> +Type -> Type
__-->__
: (-Cpo -> +Pcpo -> Pcpo, -Cpo -> +Cpo -> Cpo,
-Type -> +Type -> Type) < (__-->?__, __->__)
__-->?__ : (-Cpo -> +Cpo -> Pcpo, -Type -> +Type -> Type) < __->?__
__->__ : -Type -> +Type -> Type < __->?__
__->?__ : -Type -> +Type -> Type
bool
: (Flatcpo, Type)
%[free type bool
::= true : bool
false : bool]%
nat : (Flatcpo, Type)
s : Type
%% Type Variables --------------------------------------------------------
c : Cpo %(var_199)%
d : Cpo %(var_200)%
f : Flatcpo %(var_198)%
p : Pcpo %(var_197)%
t : Type %(var_2)%
%% Assumptions -----------------------------------------------------------
Y : forall p : Pcpo . (p --> p) --> p %(fun)%
__/\__ : Unit * Unit ->? Unit %(fun)%
__<<=__ : forall c : Cpo . c * c ->? Unit %(pred)%
__<=>__ : Unit * Unit ->? Unit %(fun)%
__=__ : forall s : Type . s * s ->? Unit %(fun)%
__=>__ : Unit * Unit ->? Unit %(fun)%
__=e=__ : forall a : Type . a * a ->? Unit %(fun)%
__\/__ : Unit * Unit ->? Unit %(fun)%
__if__ : Unit * Unit ->? Unit %(fun)%
__res__
: forall s : Type; t : Type . s * t -> s
%(op)% = \ ((var x : s), (var y : t)) .! (var x : s) as s
__when__else__ : forall a : Type . a * ? Unit * a ->? a %(fun)%
bottom : forall p : Pcpo . p %(fun)%
def : forall s : Type . Pred s %(op)%
def__ : forall a : Type . a ->? Unit %(fun)%
eq : forall s : Type . s * s ->? Unit %(pred)%
false
: bool %(construct bool)%
: Unit ->? Unit %(pred)%
: Unit %(fun)%
fst
: forall s : Type; t : Type . s * t -> s
%(op)% = \ ((var x : s), (var y : t)) .! (var x : s) as s
isBound
: forall c : Cpo . c * (nat -> c) ->? Unit
%(pred)%
= \ ((var x : c), (var s : nat -> c))
. all (\ n : nat . s (n) <<= x) as Unit
isChain
: forall c : Cpo . (nat -> c) ->? Unit
%(pred)%
= \ (var s : nat -> c)
. all (\ n : nat . s (n) <<= s (Suc (n))) as Unit
not : Unit ->? Unit %(pred)%
not__ : ? Unit ->? Unit %(fun)%
sup : forall c : Cpo . (nat -> c) ->? c %(op)%
true
: bool %(construct bool)%
: Unit ->? Unit %(pred)%
: Unit %(fun)%
tt : forall s : Type . Pred s %(op)%
undefined
: forall p : Pcpo; c : Cpo . c --> p
%(op)%
= (fun Y[c --> p] : forall p : Pcpo . (p --> p) --> p)
(\ (var x' : c --> p) . (var x' : c --> p) as
(c --> p) --> c --> p)
as c --> p
�__ : ? Unit ->? Unit %(fun)%
%% Variables -------------------------------------------------------------
f : p --> p
g : c --> d
x : p
x1 : c
x2 : c
y1 : d
y2 : d
%% Sentences -------------------------------------------------------------
program def = \ x . () %(pe_def)%
program tt = \ x . () %(pe_tt)%
forall x : s; y : t . x res y = (x as s) %(def___res__)%
forall x : s; y : t . fst (x, y) = (x as s) %(def_fst)%
__=__ (\ (x, y) . def (x res y), \ (x, y) . (def y) und (def x))
__=__ (fst, __res__)
__=__ (\ x . eq (x, x), tt)
__=__
(\ (x, y) . __res__ (x, eq (x, y)),
\ (x, y) . __res__ (y, eq (x, y)))
forall s : nat -> c
. isChain s =
(all (\ n : nat . s (n) <<= s (Suc (n))) as Unit) %(def_isChain)%
forall x : c; s : nat -> c
. isBound (x, s) =
(all (\ n : nat . s (n) <<= x) as Unit) %(def_isBound)%
__=__ (f (Y f), Y f)
(__=__ (f x, x)) => (__<<=__ (Y f, x))
undefined =
(Y (\ x' . x' as (c --> p) --> c --> p) as
c --> p) %(def_undefined)%
free type bool
::= true : bool
false : bool %(ga_bool)%
%% Diagnostics -----------------------------------------------------------
*** Warning 4.7, void universe class declaration 'Type'
*** Hint 6.5, is type variable 's'
*** Hint 6.7, is type variable 't'
*** Hint 11.6, redeclared type 'Unit'
*** Error 14.11, illegal type pattern argument '__'
*** Error 15.8, illegal type pattern argument '__'
*** Warning 17.6, ignoring declaration for builtin identifier 'true'
*** Warning 17.12, ignoring declaration for builtin identifier 'false'
*** Warning 19.9, ignoring declaration for builtin identifier '__/\__'
*** Warning 19.17, ignoring declaration for builtin identifier '__\/__'
*** Warning 19.25, ignoring declaration for builtin identifier '__=>__'
*** Warning 19.33, ignoring declaration for builtin identifier '__if__'
*** Warning 19.40, ignoring declaration for builtin identifier '__<=>__'
*** Warning 22.8, ignoring declaration for builtin identifier '__=__'
*** Hint 27.8, redeclared type '__->?__'
*** Hint 30.8, redeclared type '__*__'
*** Error 31.6-31.12, illegal type pattern '__ * __ * __'
*** Hint 40.7, not a class 's'
*** Hint 42.16, rebound variable 'x'
*** Hint 44.15, rebound variable 'x'
*** Error 46.11, unexpected mixfix token: und
*** Hint 50.8, redeclared type '__->__'
*** Hint 52.8, redeclared type '__->__'
*** Hint, repeated supertype '__->?__'
*** Error 54.42-54.49, ambiguous mixfix term
def__(f x)
def f x
*** Error 54.32, unexpected mixfix token: all
*** Error 54.6, unexpected mixfix token: :
*** Hint 58.13, rebound variable 'x'
*** Hint 59.9, rebound variable 'x'
*** Hint 60.9, no type match for: snd
with (maximal) type: _v11 ->? t
known types:
*** Hint 60.9-60.24, untypable application (with result type: t)
'snd (x : s, (var y : t))'
*** Error 60.30, no typing for 'program snd (x : s, (var y : t)) : t = y'
*** Error 65.18-65.30, ambiguous mixfix term
def (__res__(x, y))
def__(__res__(x, y))
*** Error 65.59, unexpected mixfix token: und
*** Hint 65.7, rebound variable 'x'
*** Error 65.18-65.30, unexpected term 'def (x res y)'
*** Hint 65.40, rebound variable 'x'
*** Error 65.51-65.69, unexpected term '(def y) und (def x)'
*** Hint 74.5, rebound variable 'x'
*** Hint 75.6, rebound variable 'x'
*** Hint 75.35, rebound variable 'x'
*** Warning 85.6, new type shadows type variable 's'
*** Error 85.11, illegal type variable as supertype 's'
*** Hint 87.9, no type match for: all
with (maximal) type: _v187 ->? Pred Unit
known types:
*** Hint 87.9-87.15, untypable application (with result type: Pred Unit)
'all (var p : Pred s)'
*** Error 87.38, no typing for 'program all (var p : Pred s) : Pred Unit = eq (p, tt)'
*** Error 90.45, unexpected mixfix token: t1
*** Error 93.11, unexpected mixfix token: impl
*** Error 93.58, unexpected mixfix token: And
*** Error 95.11, unexpected mixfix token: or
*** Error 96.21, unexpected mixfix token: impl
*** Error 95.48, unexpected mixfix token: all
*** Error 99.32, unexpected mixfix token: impl
*** Error 99.17, unexpected mixfix token: all
*** Error 98.39, unexpected mixfix token: all
*** Error 101.29, unexpected mixfix token: all
*** Error 103.44, unexpected mixfix token: impl
*** Error 108.51, unexpected mixfix token: impl
*** Error 108.22, unexpected mixfix token: all
*** Error 108.3, unexpected mixfix token: all
*** Hint 117.5, is type variable 'c'
*** Error 121.3, unexpected mixfix token: all
*** Error 122.31, unexpected mixfix token: und
*** Error 122.3, unexpected mixfix token: all
*** Error 123.31, unexpected mixfix token: und
*** Error 123.3, unexpected mixfix token: all
*** Error 125.55, unexpected mixfix token: Suc
*** Error 125.32, unexpected mixfix token: all
*** Error 125.32-125.62, unexpected term 'all (\ n : nat . s (n) <<= s (Suc (n)))'
*** Hint 126.15, rebound variable 'x'
*** Error 126.38, unexpected mixfix token: all
*** Error 126.38-126.60, unexpected term 'all (\ n : nat . s (n) <<= x)'
*** Error 131.56, unexpected mixfix token: impl
*** Error 130.32, unexpected mixfix token: impl
*** Error 130.3, unexpected mixfix token: all
*** Error 134.31, unexpected mixfix token: impl
*** Error 134.3, unexpected mixfix token: all
*** Hint 139.5, is type variable 'p'
*** Warning 141.4, ignoring declaration for builtin identifier 'bottom'
*** Error 143.3, unexpected mixfix token: all
*** Hint 148.6, is type variable 'f'
*** Error 150.15, unexpected mixfix token: [
*** Hint 153.5, is type variable 'c'
*** Hint 153.5, rebound type variable 'c'
*** Hint 153.8, is type variable 'd'
*** Hint 157.7, not a class 'c'
*** Hint 157.11, not a class 'c'
*** Hint 157.18, not a class 'd'
*** Hint 157.23, not a class 'd'
*** Error 159.45, unexpected mixfix token: und
*** Hint 169.9, redeclared type '__-->?__'
*** Hint, repeated supertype '__->?__'
*** Error 171.35, unexpected mixfix token: und
*** Error 174.45, unexpected mixfix token: +
*** Error 173.40, unexpected mixfix token: und
*** Error 172.39, unexpected mixfix token: und
*** Error 171.9, unexpected mixfix token: all
*** Error 170.7, unexpected mixfix token: :
*** Error 176.51, unexpected mixfix token: impl
*** Error 176.31, unexpected mixfix token: all
*** Error 181.9, non-unique kind for '__-->__'
*** Error 182.46-182.53, ambiguous mixfix term
def__(f x)
def f x
*** Error 182.36, unexpected mixfix token: all
*** Error 182.7, unexpected mixfix token: :
*** Hint 184.7, not a kind 'c --> d'
*** Hint 184.11, not a kind 'c --> d'
*** Error 186.26, unexpected mixfix token: c
*** Error 193.32, unexpected mixfix token: impl
*** Error 192.40, unexpected mixfix token: und
*** Error 192.3, unexpected mixfix token: all
*** Hint 195.7, not a kind 'p --> p'
*** Hint 195.5, rebound variable 'f'
*** Hint 195.20, not a class 'p'
*** Hint 195.18, rebound variable 'x'
*** Warning 204.20, ignoring declaration for builtin identifier 'true'
*** Warning 204.27, ignoring declaration for builtin identifier 'false'