PetriSystemCategory.hascasl revision 7b47917488ffdd72119358c064c94e5dfc4f8fe3
type Nat
op 0,1 : Nat
op __ + __, __-__, min : Nat * Nat -> Nat;
pred __ >= __, __<=__, __>__ : Nat * Nat
free type Boolean ::= True | False
var S,V : Type
type Set S := S ->? Unit;
ops emptySet : Set S;
{__} : S -> Set S;
__isIn__ : S * Set S ->? Unit;
__subset__ :Pred( Set(S) * Set(S) );
__union__, __intersection__, __\\__ : Set S * Set S -> Set S;
__disjoint__ : Pred( Set(S) * Set(S) );
__*__ : Set S * Set V -> Set (S*V);
__disjointUnion__ : Set S * Set S -> Set (S*Boolean);
injl,injr : S -> S*Boolean;
var Elem : Type
type MultiSet Elem := Elem ->? Nat
ops __ isIn__ : Pred (Elem * MultiSet Elem);
__ <= __ : Pred (MultiSet Elem * MultiSet Elem);
{} : MultiSet Elem;
{__} : Elem -> MultiSet Elem;
__ + __, __ - __, __intersection__:
MultiSet Elem * MultiSet Elem -> MultiSet Elem;
freq : Elem * MultiSet Elem -> Nat;
setToMultiSet : Set Elem -> MultiSet Elem
var Elem : Type
op MultiSetToSet : MultiSet Elem -> Set Elem
forall B:MultiSet Elem; S: Set Elem
. let S = MultiSetToSet(B) in
forall x: Elem. x isIn S <=> freq(x,B) > 0
var S : Type
type MapMultiSet S := MultiSet S ->? MultiSet S
var a:Type
ops sumN : (Nat->?Nat) -> Nat -> Nat;
sumSet : Set Nat ->? Nat;
sum : (a->?Nat) -> Pred a ->? Nat
var S,V,U : Type
type Map S := S->?S
ops dom : (S->?V) -> Set S;
range : (S->?V) -> Set V;
image : (S->?V) -> Set S -> Set V;
emptyMap : (S->?V);
__ :: __ --> __ : Pred ( (S->?V) * Pred(S) * Pred(V) );
__ [__/__] : (S->?V) * S * V -> (S->?V);
__ - __ : (S->?V) * S -> (S->?V);
__o__ : (V->?U) * (S->?V) -> (S->?U);
__||__ : (S->?V) * Set S -> (S->?V);
undef__ : S ->?V;
ker : (S->?V) -> Pred (S*S);
injective : Pred(S->?V);
__intersectionMap__, __unionMap__ : (S->?V) * (S->?V) -> (S->?V);
__restrict__ : (S->?V) * Set S -> (S->?V)
var S, V : Type
ops __ :: __ --> __ : Pred ( (S->? MultiSet V) * Set S * Set V);
freeMap : Map S -> MapMultiSet S;
linMap : (S->? MultiSet V) -> (MultiSet S->? MultiSet V)
ops __ intersection __: MultiSet Elem * MultiSet Elem -> MultiSet Elem,
assoc, comm, idem
sorts P, T
type Net = {(p,pre,post) : Set P * (T ->? MultiSet P) * (T ->? MultiSet P) . dom pre=dom post /\
(forall p1:MultiSet P . p1 isIn range pre => MultiSetToSet p1 subset p)
/\ (forall p1:MultiSet P . p1 isIn range pre => MultiSetToSet p1 subset p) }
ops places : Net -> Set P;
transitions : Net -> Set T;
preMap, postMap : Net -> (T ->? MultiSet P);
type HomNet =
{(n1,hp,ht,n2) : Net * (P->?P) * (T->?T) * Net .
hp :: places n1 --> places n2 /\ ht :: transitions n1 --> transitions n2
/\ forall t:T . t isIn transitions n1 =>
( freeMap hp (preMap n1 t) = preMap n2 (ht t)
/\ freeMap hp (postMap n1 t) = postMap n2 (ht t) ) }
ops dom : HomNet -> Net;
cod : HomNet -> Net;
placesMap : HomNet -> (P->?P);
transitionsMap : HomNet -> (T->?T);
id : Net ->? HomNet;
__o__ : HomNet * HomNet ->? HomNet
pred injective : HomNet
type Marking := MultiSet P
type System = {(n,m) : Net * Marking
. let (p,pre1,post1) = n
in forall x:P . x isIn m => x isIn p }
ops marking : System -> Marking;
net : System -> Net;
empty : Marking;
__|<__> : System * T -> System;
__|<__> : System * MultiSet T ->? System;
type HomSys = {(sys1,hp,ht,sys2) : System * (P->?P) * (T->?T) * System .
((net(sys1), hp, ht, net(sys2)) in HomNet )
/\ forall p: P. freq(p, marking(sys1)) <= freq(hp p, marking(sys2))}
ops dom : HomSys -> System;
cod : HomSys -> System;
placesMap : HomSys -> (P->?P);
transitionsMap : HomSys -> (T->?T);
id : System ->? HomSys;
__o__ : HomSys * HomSys ->? HomSys
pred injective : HomSys
forall h1, h2:HomSys
. def (h2 o h1) => h2 o h1 =
(dom h1, placesMap h2 o placesMap h1, transitionsMap h2 o transitionsMap h1,cod h2)
as HomSys