PetriSystemCategory.hascasl.output revision 699511266869036921be9c7ae6ac83d1b66ba51d
type Nat
op 0, 1 : Nat
op __+__, __-__, min : Nat * Nat -> Nat
pred __>=__, __<=__, __>__ : Nat * Nat
free type Boolean ::= True |
False
var S : Type; V : Type
type Set : Type -> Type := \ S : Type . S ->? Unit
op emptySet : Set S; {__} : S -> Set S;
__isIn__ : S * Set S ->? Unit;
__subset__ : Pred (Set (S) * Set (S));
__union__, __intersection__, __\\__ : Set S * Set S -> Set S;
__disjoint__ : Pred (Set (S) * Set (S));
__*__ : Set S * Set V -> Set (S * V);
__disjointUnion__ : Set S * Set S -> Set (S * Boolean);
injl, injr : S -> S * Boolean
var Elem : Type
type MultiSet : Type -> Type := \ Elem : Type . Elem ->? Nat
op __isIn__ : Pred (Elem * MultiSet Elem);
__<=__ : Pred (MultiSet Elem * MultiSet Elem); {} : MultiSet Elem;
{__} : Elem -> MultiSet Elem;
__+__, __-__, __intersection__ : MultiSet Elem * MultiSet Elem ->
MultiSet Elem;
freq : Elem * MultiSet Elem -> Nat;
setToMultiSet : Set Elem -> MultiSet Elem
var Elem : Type
op MultiSetToSet : MultiSet Elem -> Set Elem
forall B : MultiSet Elem; S : Set Elem
. let (var S : Set Elem) =
(op MultiSetToSet[Elem] :
forall Elem : Type . MultiSet Elem -> Set Elem)
(var B : MultiSet Elem)
in forall x : Elem
. (__<=>__)
(((op __isIn__[Elem] : forall S : Type . S * Set S ->? Unit)
(((var x : Elem), (var S : Set Elem))),
(pred __>__ : Nat * Nat)
(((op freq[Elem] :
forall Elem : Type . Elem * MultiSet Elem -> Nat)
(((var x : Elem), (var B : MultiSet Elem))),
(op 0 : Nat)))))
var S : Type
type MapMultiSet : Type -> Type := \ S : Type . MultiSet S ->?
MultiSet S
var a : Type
op sumN : (Nat ->? Nat) -> Nat -> Nat; sumSet : Set Nat ->? Nat;
sum : (a ->? Nat) -> Pred a ->? Nat
var S : Type; V : Type; U : Type
type Map : Type -> Type := \ S : Type . S ->? S
op dom : (S ->? V) -> Set S; range : (S ->? V) -> Set V;
image : (S ->? V) -> Set S -> Set V; emptyMap : (S ->? V);
__::__-->__ : Pred ((S ->? V) * Pred (S) * Pred (V));
__[__/__] : (S ->? V) * S * V -> (S ->? V);
__-__ : (S ->? V) * S -> (S ->? V);
__o__ : (V ->? U) * (S ->? V) -> (S ->? U);
__||__ : (S ->? V) * Set S -> (S ->? V); undef__ : S ->? V;
ker : (S ->? V) -> Pred (S * S); injective : Pred (S ->? V);
__intersectionMap__, __unionMap__ : (S ->? V) * (S ->? V) ->
(S ->? V);
__restrict__ : (S ->? V) * Set S -> (S ->? V)
var S : Type; V : Type
op __::__-->__ : Pred ((S ->? MultiSet V) * Set S * Set V);
freeMap : Map S -> MapMultiSet S;
linMap : (S ->? MultiSet V) -> (MultiSet S ->? MultiSet V)
op __intersection__ : MultiSet Elem * MultiSet Elem ->
MultiSet Elem, assoc, comm, idem
type P, T
type Net = {(p, pre, post) : Set P * (T ->? MultiSet P) *
(T ->? MultiSet P) . (__/\__)
(((__/\__)
(((__=__)
(((op dom[T; P ->? Nat] :
forall S : Type; V : Type .
(S ->? V) -> Set S)
(var pre : T ->? MultiSet P),
(op dom[T; P ->? Nat] :
forall S : Type; V : Type .
(S ->? V) -> Set S)
(var post : T ->? MultiSet P))),
forall p1 : MultiSet P
. (__=>__)
(((op __isIn__[P ->? Nat] :
forall S : Type . S * Set S ->? Unit)
(((var p1 : MultiSet P),
(op range[T; P ->? Nat] :
forall S : Type; V : Type .
(S ->? V) -> Set V)
(var pre : T ->? MultiSet P))),
(op __subset__[P] :
forall S : Type . Pred (Set S * Set S))
(((op MultiSetToSet[P] :
forall Elem : Type .
MultiSet Elem -> Set Elem)
(var p1 : MultiSet P),
(var p : Set P))))))),
forall p1 : MultiSet P
. (__=>__)
(((op __isIn__[P ->? Nat] :
forall S : Type . S * Set S ->? Unit)
(((var p1 : MultiSet P),
(op range[T; P ->? Nat] :
forall S : Type; V : Type .
(S ->? V) -> Set V)
(var pre : T ->? MultiSet P))),
(op __subset__[P] :
forall S : Type . Pred (Set S * Set S))
(((op MultiSetToSet[P] :
forall Elem : Type .
MultiSet Elem -> Set Elem)
(var p1 : MultiSet P),
(var p : Set P)))))))}
op places : Net -> Set P; transitions : Net -> Set T;
preMap, postMap : Net -> (T ->? MultiSet P)
type HomNet = {(n1, hp, ht, n2) : Net * (P ->? P) * (T ->? T) *
Net . (__/\__)
(((__/\__)
(((op __::__-->__[P; P] :
forall S : Type; V : Type .
Pred ((S ->? V) * Pred S * Pred V))
(((var hp : P ->? P),
(op places : Net -> Set P) (var n1 : Net),
(op places : Net -> Set P) (var n2 : Net))),
(op __::__-->__[T; T] :
forall S : Type; V : Type .
Pred ((S ->? V) * Pred S * Pred V))
(((var ht : T ->? T),
(op transitions : Net -> Set T) (var n1 : Net),
(op transitions : Net -> Set T) (var n2 : Net))))),
forall t : T
. (__=>__)
(((op __isIn__[T] :
forall S : Type . S * Set S ->? Unit)
(((var t : T),
(op transitions : Net -> Set T) (var n1 : Net))),
(__/\__)
(((__=__)
((((op freeMap[P] :
forall S : Type . Map S -> MapMultiSet S)
(var hp : P ->? P))
(((op preMap : Net -> T ->? MultiSet P)
(var n1 : Net))
(var t : T)),
((op preMap : Net -> T ->? MultiSet P)
(var n2 : Net))
((var ht : T ->? T) (var t : T)))),
(__=__)
((((op freeMap[P] :
forall S : Type . Map S -> MapMultiSet S)
(var hp : P ->? P))
(((op postMap : Net -> T ->? MultiSet P)
(var n1 : Net))
(var t : T)),
((op postMap : Net -> T ->? MultiSet P)
(var n2 : Net))
((var ht : T ->? T) (var t : T))))))))))}
op dom : HomNet -> Net; cod : HomNet -> Net;
placesMap : HomNet -> (P ->? P);
transitionsMap : HomNet -> (T ->? T); id : Net ->? HomNet;
__o__ : HomNet * HomNet ->? HomNet
pred injective : HomNet
type Marking : Type := MultiSet P
type System = {(n, m) : Net * Marking . let ((var p : P ->? Unit),
(var pre1 : T ->? P ->? Nat),
(var post1 : T ->? P ->? Nat))
= (var n : Net)
in forall x : P
. (__=>__)
(((op __isIn__[P] :
forall Elem : Type . Pred (Elem * MultiSet Elem))
(((var x : P), (var m : Marking))),
(op __isIn__[P] :
forall S : Type . S * Set S ->? Unit)
(((var x : P), (var p : P ->? Unit)))))}
op marking : System -> Marking; net : System -> Net;
empty : Marking; __|<__> : System * T -> System;
__|<__> : System * MultiSet T ->? System
type HomSys = {(sys1, hp, ht, sys2) : System * (P ->? P) *
(T ->? T) * System . (__/\__)
((((op net : System -> Net)
(var sys1 : System),
(var hp : P ->? P),
(var ht : T ->? T),
(op net : System -> Net)
(var sys2 : System))
in HomNet,
forall p : P
. (pred __<=__ : Nat * Nat)
(((op freq[P] :
forall Elem : Type .
Elem * MultiSet Elem -> Nat)
(((var p : P),
(op marking :
System -> Marking)
(var sys1 : System))),
(op freq[P] :
forall Elem : Type .
Elem * MultiSet Elem -> Nat)
(((var hp : P ->? P) (var p : P),
(op marking :
System -> Marking)
(var sys2 : System)))))))}
op dom : HomSys -> System; cod : HomSys -> System;
placesMap : HomSys -> (P ->? P);
transitionsMap : HomSys -> (T ->? T); id : System ->? HomSys;
__o__ : HomSys * HomSys ->? HomSys
pred injective : HomSys
forall h1 : HomSys; h2 : HomSys
. (__=>__)
(((def__)
((op __o__ : HomSys * HomSys ->? HomSys)
(((var h2 : HomSys), (var h1 : HomSys)))),
(__=__)
(((op __o__ : HomSys * HomSys ->? HomSys)
(((var h2 : HomSys), (var h1 : HomSys))),
((op dom : HomSys -> System) (var h1 : HomSys),
(op __o__[P; P; P] :
forall S : Type; V : Type; U : Type .
(V ->? U) * (S ->? V) -> S ->? U)
(((op placesMap : HomSys -> P ->? P) (var h2 : HomSys),
(op placesMap : HomSys -> P ->? P) (var h1 : HomSys))),
(op __o__[T; T; T] :
forall S : Type; V : Type; U : Type .
(V ->? U) * (S ->? V) -> S ->? U)
(((op transitionsMap : HomSys -> T ->? T) (var h2 : HomSys),
(op transitionsMap : HomSys -> T ->? T) (var h1 : HomSys))),
(op cod : HomSys -> System) (var h2 : HomSys))
as HomSys))))
%% Type Constructors -----------------------------------------------------
? : +Type -> Type
Boolean
: Type
%[free type Boolean
::= True : Boolean
False : Boolean]%
HomNet : Type := _t1018 Net (P ->? P) (T ->? T) Net
HomSys : Type := _t1516 System (P ->? P) (T ->? T) System
Logical : Type := ? Unit
Map : Type -> Type := \ S : Type . S ->? S
MapMultiSet
: Type -> Type := \ S : Type . MultiSet S ->? MultiSet S
Marking : Type := MultiSet P
MultiSet : Type -> Type := \ Elem : Type . Elem ->? Nat
Nat : Type
Net : Type := _t366 (Set P) (T ->? MultiSet P) (T ->? MultiSet P)
P : Type
Pred : -Type -> Type := \ a : -Type . a ->? Unit
Set : Type -> Type := \ S : Type . S ->? Unit
System : Type := _t1088 Net Marking
T : Type
Unit : Type
__*__ : +Type -> +Type -> Type
__*__*__ : +Type -> +Type -> +Type -> Type
__*__*__*__ : +Type -> +Type -> +Type -> +Type -> Type
__*__*__*__*__ : +Type -> +Type -> +Type -> +Type -> +Type -> Type
__-->__ : -Type -> +Type -> Type < (__-->?__, __->__)
__-->?__ : -Type -> +Type -> Type < __->?__
__->__ : -Type -> +Type -> Type < __->?__
__->?__ : -Type -> +Type -> Type
_t1015 : +Type -> Type := _t1018 Net (P ->? P) (T ->? T)
_t1016 : +Type -> +Type -> Type := _t1018 Net (P ->? P)
_t1017 : +Type -> +Type -> +Type -> Type := _t1018 Net
_t1018 : +Type -> +Type -> +Type -> +Type -> Type < __*__*__*__
_t1087 : +Type -> Type := _t1088 Net
_t1088 : +Type -> +Type -> Type < __*__
_t1513 : +Type -> Type := _t1516 System (P ->? P) (T ->? T)
_t1514 : +Type -> +Type -> Type := _t1516 System (P ->? P)
_t1515 : +Type -> +Type -> +Type -> Type := _t1516 System
_t1516 : +Type -> +Type -> +Type -> +Type -> Type < __*__*__*__
_t364 : +Type -> Type := _t366 (Set P) (T ->? MultiSet P)
_t365 : +Type -> +Type -> Type := _t366 (Set P)
_t366 : +Type -> +Type -> +Type -> Type < __*__*__
%% Type Variables --------------------------------------------------------
Elem : Type %(var_6)%
S : Type %(var_62)%
U : Type %(var_60)%
V : Type %(var_63)%
a : Type %(var_57)%
%% Assumptions -----------------------------------------------------------
0 : Nat %(op)%
1 : Nat %(op)%
False : Boolean %(construct Boolean)%
MultiSetToSet
: forall Elem : Type . MultiSet Elem -> Set Elem %(op)%
True : Boolean %(construct Boolean)%
__*__
: forall S : Type; V : Type . Set S * Set V -> Set (S * V) %(op)%
__+__
: forall Elem : Type .
MultiSet Elem * MultiSet Elem -> MultiSet Elem
%(op)%
: Nat * Nat -> Nat %(op)%
__-__
: forall S : Type; V : Type . (S ->? V) * S -> S ->? V %(op)%
: forall Elem : Type .
MultiSet Elem * MultiSet Elem -> MultiSet Elem
%(op)%
: Nat * Nat -> Nat %(op)%
__/\__ : ? Unit * ? Unit ->? Unit %(fun)%
__::__-->__
: forall S : Type; V : Type .
Pred ((S ->? MultiSet V) * Set S * Set V)
%(op)%
: forall S : Type; V : Type . Pred ((S ->? V) * Pred S * Pred V)
%(op)%
__<=__
: forall Elem : Type . Pred (MultiSet Elem * MultiSet Elem) %(op)%
: Nat * Nat ->? Unit %(pred)%
__<=>__ : ? Unit * ? Unit ->? Unit %(fun)%
__=__ : forall a : Type . a * a ->? Unit %(fun)%
__=>__ : ? Unit * ? Unit ->? Unit %(fun)%
__=e=__ : forall a : Type . a * a ->? Unit %(fun)%
__>__ : Nat * Nat ->? Unit %(pred)%
__>=__ : Nat * Nat ->? Unit %(pred)%
__[__/__]
: forall S : Type; V : Type . (S ->? V) * S * V -> S ->? V %(op)%
__\/__ : ? Unit * ? Unit ->? Unit %(fun)%
__\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
__disjoint__ : forall S : Type . Pred (Set S * Set S) %(op)%
__disjointUnion__
: forall S : Type . Set S * Set S -> Set (S * Boolean) %(op)%
__if__ : ? Unit * ? Unit ->? Unit %(fun)%
__intersection__
: forall Elem : Type .
MultiSet Elem * MultiSet Elem -> MultiSet Elem,assoc, comm, idem
%(op)%
: forall S : Type . Set S * Set S -> Set S %(op)%
__intersectionMap__
: forall S : Type; V : Type . (S ->? V) * (S ->? V) -> S ->? V
%(op)%
__isIn__
: forall Elem : Type . Pred (Elem * MultiSet Elem) %(op)%
: forall S : Type . S * Set S ->? Unit %(op)%
__o__
: HomSys * HomSys ->? HomSys %(op)%
: HomNet * HomNet ->? HomNet %(op)%
: forall S : Type; V : Type; U : Type .
(V ->? U) * (S ->? V) -> S ->? U
%(op)%
__restrict__
: forall S : Type; V : Type . (S ->? V) * Set S -> S ->? V %(op)%
__subset__ : forall S : Type . Pred (Set S * Set S) %(op)%
__union__ : forall S : Type . Set S * Set S -> Set S %(op)%
__unionMap__
: forall S : Type; V : Type . (S ->? V) * (S ->? V) -> S ->? V
%(op)%
__when__else__ : forall a : Type . a * ? Unit * a ->? a %(fun)%
__|<__>
: System * MultiSet T ->? System %(op)%
: System * T -> System %(op)%
__||__
: forall S : Type; V : Type . (S ->? V) * Set S -> S ->? V %(op)%
bottom : forall a : Type . a %(fun)%
cod
: HomSys -> System %(op)%
: HomNet -> Net %(op)%
def__ : forall a : Type . a ->? Unit %(fun)%
dom
: HomSys -> System %(op)%
: HomNet -> Net %(op)%
: forall S : Type; V : Type . (S ->? V) -> Set S %(op)%
empty : Marking %(op)%
emptyMap : forall S : Type; V : Type . S ->? V %(op)%
emptySet : forall S : Type . Set S %(op)%
false : Unit %(fun)%
freeMap : forall S : Type . Map S -> MapMultiSet S %(op)%
freq : forall Elem : Type . Elem * MultiSet Elem -> Nat %(op)%
id
: System ->? HomSys %(op)%
: Net ->? HomNet %(op)%
image
: forall S : Type; V : Type . (S ->? V) -> Set S -> Set V %(op)%
injective
: HomSys ->? Unit %(pred)%
: HomNet ->? Unit %(pred)%
: forall S : Type; V : Type . Pred (S ->? V) %(op)%
injl : forall S : Type . S -> S * Boolean %(op)%
injr : forall S : Type . S -> S * Boolean %(op)%
ker : forall S : Type; V : Type . (S ->? V) -> Pred (S * S) %(op)%
linMap
: forall S : Type; V : Type .
(S ->? MultiSet V) -> MultiSet S ->? MultiSet V
%(op)%
marking : System -> Marking %(op)%
min : Nat * Nat -> Nat %(op)%
net : System -> Net %(op)%
not__ : ? Unit ->? Unit %(fun)%
places : Net -> Set P %(op)%
placesMap
: HomSys -> P ->? P %(op)%
: HomNet -> P ->? P %(op)%
postMap : Net -> T ->? MultiSet P %(op)%
preMap : Net -> T ->? MultiSet P %(op)%
range : forall S : Type; V : Type . (S ->? V) -> Set V %(op)%
setToMultiSet
: forall Elem : Type . Set Elem -> MultiSet Elem %(op)%
sum : forall a : Type . (a ->? Nat) -> Pred a ->? Nat %(op)%
sumN : (Nat ->? Nat) -> Nat -> Nat %(op)%
sumSet : Set Nat ->? Nat %(op)%
transitions : Net -> Set T %(op)%
transitionsMap
: HomSys -> T ->? T %(op)%
: HomNet -> T ->? T %(op)%
true : Unit %(fun)%
undef__ : forall S : Type; V : Type . S ->? V %(op)%
{__}
: forall Elem : Type . Elem -> MultiSet Elem %(op)%
: forall S : Type . S -> Set S %(op)%
{} : forall Elem : Type . MultiSet Elem %(op)%
�__ : ? Unit ->? Unit %(fun)%
%% Variables -------------------------------------------------------------
B : MultiSet Elem
S : Set Elem
h1 : HomSys
h2 : HomSys
%% Sentences -------------------------------------------------------------
free type Boolean
::= True : Boolean
False : Boolean %(ga_Boolean)%
let S = (MultiSetToSet) B in
forall x : Elem
. ((__isIn__ : Elem * Set Elem ->? Unit) ((x, S))) <=>
(((freq) ((x, B))) > 0)
((def__) ((op __o__ : HomSys * HomSys ->? HomSys) ((h2, h1)))) =>
((__=__)
(((op __o__ : HomSys * HomSys ->? HomSys) ((h2, h1)),
((op dom : HomSys -> System) h1,
(__o__ : (P ->? P) * (P ->? P) -> P ->? P)
(((op placesMap : HomSys -> P ->? P) h2,
(op placesMap : HomSys -> P ->? P) h1)),
(__o__ : (T ->? T) * (T ->? T) -> T ->? T)
(((op transitionsMap : HomSys -> T ->? T) h2,
(op transitionsMap : HomSys -> T ->? T) h1)),
(op cod : HomSys -> System) h2)
as HomSys)))
%% Diagnostics -----------------------------------------------------------
*** Hint 7.7, is type variable 'S'
*** Hint 7.9, is type variable 'V'
*** Hint 8.12, rebound type variable 'S'
*** Hint 19.7, is type variable 'Elem'
*** Hint 20.18, rebound type variable 'Elem'
*** Hint 31.6, is type variable 'Elem'
*** Hint 31.6, rebound type variable 'Elem'
*** Hint 33.10, not a kind 'MultiSet Elem'
*** Hint 33.27, not a kind 'Set Elem'
*** Hint 35.17, not a class 'Elem'
*** Hint 34.12, rebound variable 'S'
*** Hint 34.12, rebound variable 'S'
*** Hint, rejected 'Unit < Nat' of '((var x : Elem), (var S : Set Elem))'
*** Hint 37.7, is type variable 'S'
*** Hint 37.7, rebound type variable 'S'
*** Hint 38.21, rebound type variable 'S'
*** Hint 40.7, is type variable 'a'
*** Hint 45.7, is type variable 'S'
*** Hint 45.7, rebound type variable 'S'
*** Hint 45.9, is type variable 'V'
*** Hint 45.9, rebound type variable 'V'
*** Hint 45.11, is type variable 'U'
*** Hint 46.12, rebound type variable 'S'
*** Hint 62.7, is type variable 'S'
*** Hint 62.7, rebound type variable 'S'
*** Hint 62.10, is type variable 'V'
*** Hint 62.10, rebound type variable 'V'
*** Hint 72.23, not a kind 'MultiSet P'
*** Hint 73.26, not a kind 'MultiSet P'
*** Hint 72.45, rejected 'Unit < Nat' of '((var p1 : MultiSet P),
(op range[_v161; _v173 _v174 _v172] :
forall S : Type; V : Type . (S ->? V) -> Set V)
(var pre : T ->? MultiSet P))'
*** Hint 73.48, rejected 'Unit < Nat' of '((var p1 : MultiSet P),
(op range[_v276; _v288 _v289 _v287] :
forall S : Type; V : Type . (S ->? V) -> Set V)
(var pre : T ->? MultiSet P))'
*** Hint 81.19, not a class 'T'
*** Hint 80.14-80.35, in type of '((var hp : P ->? P), (op places : Net -> Set P) (var n1 : Net),
(op places : Net -> Set P) (var n2 : Net))'
typename 'P' (79.35)
is not unifiable with type '_v381 ->? Nat' (63.47)
*** Hint 80.47-80.78, in type of '((var ht : T ->? T),
(op transitions : Net -> Set T) (var n1 : Net),
(op transitions : Net -> Set T) (var n2 : Net))'
typename 'T' (79.45)
is not unifiable with type '_v555 ->? Nat' (63.47)
*** Hint 81.31, rejected 'Unit < Nat' of '((var t : T), (op transitions : Net -> Set T) (var n1 : Net))'
*** Hint 95.38, not a class 'P'
*** Hint, rejected 'Nat < Unit' of '((var x : P), (var m : Marking))'
*** Hint 94.29-95.62, rejected 'Unit < Nat' of 'let ((var p : _v1024 _v1025 _v1023),
(var pre1 : _v1028 _v1029 (_v1032 _v1033 _v1031)),
(var post1 : _v1036 _v1037 (_v1040 _v1041 _v1039)))
= (var n : Net)
in forall x : P
. (__=>__)
(((op __isIn__[P] :
forall Elem : Type . Pred (Elem * MultiSet Elem))
(((var x : P), (var m : Marking))),
(op __isIn__[_v1069] :
forall Elem : Type . Pred (Elem * MultiSet Elem))
(((var x : P), (var p : _v1024 _v1025 _v1023)))))'
*** Hint 104.19, not a class 'P'
*** Hint 104.24-104.74, in type of '((op freq[P] : forall Elem : Type . Elem * MultiSet Elem -> Nat)
(((var p : P),
(op marking : System -> Marking) (var sys1 : System))),
(op freq[P] : forall Elem : Type . Elem * MultiSet Elem -> Nat)
(((var hp : P ->? P) (var p : P),
(op marking : System -> Marking) (var sys2 : System))))'
typename 'Nat' (28.38)
is not unifiable with type '_v1288 ->? Nat' (23.33)
*** Hint 112.12, not a class 'HomSys'
*** Hint 112.16, not a class 'HomSys'
*** Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
*** Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint 114.15-114.40, in type of '((op placesMap : HomSys -> P ->? P) (var h2 : HomSys),
(op placesMap : HomSys -> P ->? P) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint 114.15-114.40, in type of '((op placesMap : HomSys -> P ->? P) (var h2 : HomSys),
(op placesMap : HomSys -> P ->? P) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1018 Net (P ->? P)' (79.35)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint 114.44-114.79, in type of '((op transitionsMap : HomSys -> T ->? T) (var h2 : HomSys),
(op transitionsMap : HomSys -> T ->? T) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint 114.44-114.79, in type of '((op transitionsMap : HomSys -> T ->? T) (var h2 : HomSys),
(op transitionsMap : HomSys -> T ->? T) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1018 Net (P ->? P)' (79.35)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
*** Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)