PetriSystemCategory.hascasl.output revision 0a907ffb1de8958ba48d229e5f5039141d4499cc
type Nat
ops 0, 1 : Nat
ops __+__, __-__, min : Nat * Nat -> Nat
preds __>=__, __<=__, __>__ : Nat * Nat
free type Boolean ::= True | False
vars S, V : Type
type Set S := S ->? Unit
ops emptySet : Set S;
{__} : S -> Set S;
__isIn__ : S * Set S ->? Unit;
__subset__ : Pred (Set (S) * Set (S));
__union__, __intersection__, __\\__ : Set S * Set S -> Set S;
__disjoint__ : Pred (Set (S) * Set (S));
__*__ : Set S * Set V -> Set (S * V);
__disjointUnion__ : Set S * Set S -> Set (S * Boolean);
injl, injr : S -> S * Boolean
var Elem : Type
type MultiSet Elem := Elem ->? Nat
ops __isIn__ : Pred (Elem * MultiSet Elem);
__<=__ : Pred (MultiSet Elem * MultiSet Elem);
{} : MultiSet Elem;
{__} : Elem -> MultiSet Elem;
__+__, __-__, __intersection__
: MultiSet Elem * MultiSet Elem -> MultiSet Elem;
freq : Elem * MultiSet Elem -> Nat;
setToMultiSet : Set Elem -> MultiSet Elem
var Elem : Type
op MultiSetToSet : MultiSet Elem -> Set Elem
forall B : MultiSet Elem; S : Set Elem
. let S = MultiSetToSet B in
forall x : Elem . x isIn S <=> freq (x, B) > 0;
var S : Type
type MapMultiSet S := MultiSet S ->? MultiSet S
var a : Type
ops sumN : (Nat ->? Nat) -> Nat -> Nat;
sumSet : Set Nat ->? Nat;
sum : (a ->? Nat) -> Pred a ->? Nat
vars S, V, U : Type
type Map S := S ->? S
ops dom : (S ->? V) -> Set S;
range : (S ->? V) -> Set V;
image : (S ->? V) -> Set S -> Set V;
emptyMap : (S ->? V);
__::__-->__ : Pred ((S ->? V) * Pred (S) * Pred (V));
__[__/__] : (S ->? V) * S * V -> (S ->? V);
__-__ : (S ->? V) * S -> (S ->? V);
__o__ : (V ->? U) * (S ->? V) -> (S ->? U);
__||__ : (S ->? V) * Set S -> (S ->? V);
undef__ : S ->? V;
ker : (S ->? V) -> Pred (S * S);
injective : Pred (S ->? V);
__intersectionMap__, __unionMap__
: (S ->? V) * (S ->? V) -> (S ->? V);
__restrict__ : (S ->? V) * Set S -> (S ->? V)
vars S, V : Type
ops __::__-->__ : Pred ((S ->? MultiSet V) * Set S * Set V);
freeMap : Map S -> MapMultiSet S;
linMap : (S ->? MultiSet V) -> (MultiSet S ->? MultiSet V)
op __intersection__
: MultiSet Elem * MultiSet Elem -> MultiSet Elem, assoc, comm, idem
types P, T
type Net =
{(p, pre, post) : Set P * (T ->? MultiSet P) * (T ->? MultiSet P)
. (dom pre = dom post
/\ forall p1 : MultiSet P
. p1 isIn range pre => MultiSetToSet p1 subset p)
/\ forall p1 : MultiSet P
. p1 isIn range pre => MultiSetToSet p1 subset p
}
ops places : Net -> Set P;
transitions : Net -> Set T;
preMap, postMap : Net -> (T ->? MultiSet P)
type HomNet =
{(n1, hp, ht, n2) : Net * (P ->? P) * (T ->? T) * Net
. hp :: places n1 --> places n2
/\ ht :: transitions n1 --> transitions n2
/\ forall t : T
. t isIn transitions n1
=> freeMap hp (preMap n1 t) = preMap n2 (ht t)
/\ freeMap hp (postMap n1 t) = postMap n2 (ht t)
}
ops dom : HomNet -> Net;
cod : HomNet -> Net;
placesMap : HomNet -> (P ->? P);
transitionsMap : HomNet -> (T ->? T);
id : Net ->? HomNet;
__o__ : HomNet * HomNet ->? HomNet
pred injective : HomNet
type Marking := MultiSet P
type System =
{(n, m) : Net * Marking
. let (p, pre1, post1) = n in forall x : P . x isIn m => x isIn p
}
ops marking : System -> Marking;
net : System -> Net;
empty : Marking;
__|<__> : System * T -> System;
__|<__> : System * MultiSet T ->? System
type HomSys =
{(sys1, hp, ht, sys2) : System * (P ->? P) * (T ->? T) * System
. ((net sys1, hp, ht, net sys2) in HomNet)
/\ forall p : P
. freq (p, marking sys1) <= freq (hp p, marking sys2)
}
ops dom : HomSys -> System;
cod : HomSys -> System;
placesMap : HomSys -> (P ->? P);
transitionsMap : HomSys -> (T ->? T);
id : System ->? HomSys;
__o__ : HomSys * HomSys ->? HomSys
pred injective : HomSys
forall h1, h2 : HomSys
. def (h2 o h1)
=> h2 o h1
= ((dom h1, placesMap h2 o placesMap h1,
transitionsMap h2 o transitionsMap h1, cod h2)
as HomSys);
%% Type Constructors -----------------------------------------------------
Boolean
: Type
%[free type Boolean ::=
True : Boolean
False : Boolean]%
HomNet : Type := _t1018 Net (P ->? P) (T ->? T) Net
HomSys : Type := _t1516 System (P ->? P) (T ->? T) System
Map : Type -> Type := \ S : Type . S ->? S
MapMultiSet
: Type -> Type := \ S : Type . MultiSet S ->? MultiSet S
Marking : Type := MultiSet P
MultiSet : Type -> Type := \ Elem : Type . Elem ->? Nat
Nat : Type
Net : Type := _t366 (Set P) (T ->? MultiSet P) (T ->? MultiSet P)
P : Type
Set : Type -> Type := \ S : Type . S ->? Unit
System : Type := _t1088 Net Marking
T : Type
_t1015 : +Type -> Type := _t1018 Net (P ->? P) (T ->? T)
_t1016 : +Type -> +Type -> Type := _t1018 Net (P ->? P)
_t1017 : +Type -> +Type -> +Type -> Type := _t1018 Net
_t1018 : +Type -> +Type -> +Type -> +Type -> Type < __*__*__*__
_t1087 : +Type -> Type := _t1088 Net
_t1088 : +Type -> +Type -> Type < __*__
_t1513 : +Type -> Type := _t1516 System (P ->? P) (T ->? T)
_t1514 : +Type -> +Type -> Type := _t1516 System (P ->? P)
_t1515 : +Type -> +Type -> +Type -> Type := _t1516 System
_t1516 : +Type -> +Type -> +Type -> +Type -> Type < __*__*__*__
_t364 : +Type -> Type := _t366 (Set P) (T ->? MultiSet P)
_t365 : +Type -> +Type -> Type := _t366 (Set P)
_t366 : +Type -> +Type -> +Type -> Type < __*__*__
%% Type Variables --------------------------------------------------------
Elem : Type %(var_6)%
S : Type %(var_62)%
U : Type %(var_60)%
V : Type %(var_63)%
a : Type %(var_57)%
%% Assumptions -----------------------------------------------------------
0 : Nat %(op)%
1 : Nat %(op)%
False : Boolean %(construct Boolean)%
MultiSetToSet
: forall Elem : Type . MultiSet Elem -> Set Elem %(op)%
True : Boolean %(construct Boolean)%
__*__
: forall S : Type; V : Type . Set S * Set V -> Set (S * V) %(op)%
__+__
:
forall Elem : Type . MultiSet Elem * MultiSet Elem -> MultiSet Elem
%(op)%
: Nat * Nat -> Nat %(op)%
__-__
: forall S : Type; V : Type . (S ->? V) * S -> S ->? V %(op)%
:
forall Elem : Type . MultiSet Elem * MultiSet Elem -> MultiSet Elem
%(op)%
: Nat * Nat -> Nat %(op)%
__::__-->__
:
forall S : Type; V : Type
. Pred ((S ->? MultiSet V) * Set S * Set V)
%(op)%
: forall S : Type; V : Type . Pred ((S ->? V) * Pred S * Pred V)
%(op)%
__<=__
: forall Elem : Type . Pred (MultiSet Elem * MultiSet Elem) %(op)%
: Nat * Nat ->? Unit %(pred)%
__>__ : Nat * Nat ->? Unit %(pred)%
__>=__ : Nat * Nat ->? Unit %(pred)%
__[__/__]
: forall S : Type; V : Type . (S ->? V) * S * V -> S ->? V %(op)%
__\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
__disjoint__ : forall S : Type . Pred (Set S * Set S) %(op)%
__disjointUnion__
: forall S : Type . Set S * Set S -> Set (S * Boolean) %(op)%
__intersection__
:
forall Elem : Type
. MultiSet Elem * MultiSet Elem -> MultiSet Elem,
assoc, comm, idem %(op)%
: forall S : Type . Set S * Set S -> Set S %(op)%
__intersectionMap__
: forall S : Type; V : Type . (S ->? V) * (S ->? V) -> S ->? V
%(op)%
__isIn__
: forall Elem : Type . Pred (Elem * MultiSet Elem) %(op)%
: forall S : Type . S * Set S ->? Unit %(op)%
__o__
: HomSys * HomSys ->? HomSys %(op)%
: HomNet * HomNet ->? HomNet %(op)%
:
forall S : Type; V : Type; U : Type
. (V ->? U) * (S ->? V) -> S ->? U
%(op)%
__restrict__
: forall S : Type; V : Type . (S ->? V) * Set S -> S ->? V %(op)%
__subset__ : forall S : Type . Pred (Set S * Set S) %(op)%
__union__ : forall S : Type . Set S * Set S -> Set S %(op)%
__unionMap__
: forall S : Type; V : Type . (S ->? V) * (S ->? V) -> S ->? V
%(op)%
__|<__>
: System * MultiSet T ->? System %(op)%
: System * T -> System %(op)%
__||__
: forall S : Type; V : Type . (S ->? V) * Set S -> S ->? V %(op)%
cod
: HomSys -> System %(op)%
: HomNet -> Net %(op)%
dom
: HomSys -> System %(op)%
: HomNet -> Net %(op)%
: forall S : Type; V : Type . (S ->? V) -> Set S %(op)%
empty : Marking %(op)%
emptyMap : forall S : Type; V : Type . S ->? V %(op)%
emptySet : forall S : Type . Set S %(op)%
freeMap : forall S : Type . Map S -> MapMultiSet S %(op)%
freq : forall Elem : Type . Elem * MultiSet Elem -> Nat %(op)%
id
: System ->? HomSys %(op)%
: Net ->? HomNet %(op)%
image
: forall S : Type; V : Type . (S ->? V) -> Set S -> Set V %(op)%
injective
: HomSys ->? Unit %(pred)%
: HomNet ->? Unit %(pred)%
: forall S : Type; V : Type . Pred (S ->? V) %(op)%
injl : forall S : Type . S -> S * Boolean %(op)%
injr : forall S : Type . S -> S * Boolean %(op)%
ker : forall S : Type; V : Type . (S ->? V) -> Pred (S * S) %(op)%
linMap
:
forall S : Type; V : Type
. (S ->? MultiSet V) -> MultiSet S ->? MultiSet V
%(op)%
marking : System -> Marking %(op)%
min : Nat * Nat -> Nat %(op)%
net : System -> Net %(op)%
places : Net -> Set P %(op)%
placesMap
: HomSys -> P ->? P %(op)%
: HomNet -> P ->? P %(op)%
postMap : Net -> T ->? MultiSet P %(op)%
preMap : Net -> T ->? MultiSet P %(op)%
range : forall S : Type; V : Type . (S ->? V) -> Set V %(op)%
setToMultiSet
: forall Elem : Type . Set Elem -> MultiSet Elem %(op)%
sum : forall a : Type . (a ->? Nat) -> Pred a ->? Nat %(op)%
sumN : (Nat ->? Nat) -> Nat -> Nat %(op)%
sumSet : Set Nat ->? Nat %(op)%
transitions : Net -> Set T %(op)%
transitionsMap
: HomSys -> T ->? T %(op)%
: HomNet -> T ->? T %(op)%
undef__ : forall S : Type; V : Type . S ->? V %(op)%
{__}
: forall Elem : Type . Elem -> MultiSet Elem %(op)%
: forall S : Type . S -> Set S %(op)%
{} : forall Elem : Type . MultiSet Elem %(op)%
%% Variables -------------------------------------------------------------
B : MultiSet Elem
S : Set Elem
h1 : HomSys
h2 : HomSys
%% Sentences -------------------------------------------------------------
free type Boolean ::=
True : Boolean
False : Boolean %(ga_Boolean)%
let S = MultiSetToSet B in
forall x : Elem
. (__isIn__ : Elem * Set Elem ->? Unit) (x, S) <=> freq (x, B) > 0
def (op __o__ : HomSys * HomSys ->? HomSys) (h2, h1)
=> (op __o__ : HomSys * HomSys ->? HomSys) (h2, h1)
= (((op dom : HomSys -> System) h1,
(__o__ : (P ->? P) * (P ->? P) -> P ->? P)
((op placesMap : HomSys -> P ->? P) h2,
(op placesMap : HomSys -> P ->? P) h1),
(__o__ : (T ->? T) * (T ->? T) -> T ->? T)
((op transitionsMap : HomSys -> T ->? T) h2,
(op transitionsMap : HomSys -> T ->? T) h1),
(op cod : HomSys -> System) h2)
as HomSys)
%% Diagnostics -----------------------------------------------------------
### Hint 7.7, is type variable 'S'
### Hint 7.9, is type variable 'V'
### Hint 19.7, is type variable 'Elem'
### Hint 31.6, is type variable 'Elem'
### Hint 31.6, rebound type variable 'Elem'
### Hint 33.10, not a kind 'MultiSet Elem'
### Hint 33.27, not a kind 'Set Elem'
### Hint 35.17, not a class 'Elem'
### Hint 34.12, rebound variable 'S'
### Hint 34.12, rebound variable 'S'
### Hint, rejected 'Unit < Nat' of '((var x : Elem), (var S : Set Elem))'
### Hint 37.7, is type variable 'S'
### Hint 37.7, rebound type variable 'S'
### Hint 40.7, is type variable 'a'
### Hint 45.7, is type variable 'S'
### Hint 45.7, rebound type variable 'S'
### Hint 45.9, is type variable 'V'
### Hint 45.9, rebound type variable 'V'
### Hint 45.11, is type variable 'U'
### Hint 62.7, is type variable 'S'
### Hint 62.7, rebound type variable 'S'
### Hint 62.10, is type variable 'V'
### Hint 62.10, rebound type variable 'V'
### Hint 72.23, not a kind 'MultiSet P'
### Hint 73.26, not a kind 'MultiSet P'
### Hint 72.45, rejected 'Unit < Nat' of '((var p1 : MultiSet P),
(op range[_v161; _v173 _v174 _v172] :
forall S : Type; V : Type . (S ->? V) -> Set V)
(var pre : T ->? MultiSet P))'
### Hint 73.48, rejected 'Unit < Nat' of '((var p1 : MultiSet P),
(op range[_v276; _v288 _v289 _v287] :
forall S : Type; V : Type . (S ->? V) -> Set V)
(var pre : T ->? MultiSet P))'
### Hint 81.19, not a class 'T'
### Hint 80.14-80.35, in type of '((var hp : P ->? P), (op places : Net -> Set P) (var n1 : Net),
(op places : Net -> Set P) (var n2 : Net))'
typename 'P' (79.35)
is not unifiable with type '_v381 ->? Nat' (63.47)
### Hint 80.47-80.78, in type of '((var ht : T ->? T),
(op transitions : Net -> Set T) (var n1 : Net),
(op transitions : Net -> Set T) (var n2 : Net))'
typename 'T' (79.45)
is not unifiable with type '_v555 ->? Nat' (63.47)
### Hint 81.31, rejected 'Unit < Nat' of '((var t : T), (op transitions : Net -> Set T) (var n1 : Net))'
### Hint 95.38, not a class 'P'
### Hint, rejected 'Nat < Unit' of '((var x : P), (var m : Marking))'
### Hint 94.29-95.62, rejected 'Unit < Nat' of 'let ((var p : _v1024 _v1025 _v1023),
(var pre1 : _v1028 _v1029 (_v1032 _v1033 _v1031)),
(var post1 : _v1036 _v1037 (_v1040 _v1041 _v1039)))
= (var n : Net)
in
forall x : P
. ((op __isIn__[P] :
forall Elem : Type . Pred (Elem * MultiSet Elem))
((var x : P), (var m : Marking)))
=> ((op __isIn__[_v1069] :
forall Elem : Type . Pred (Elem * MultiSet Elem))
((var x : P), (var p : _v1024 _v1025 _v1023)))'
### Hint 104.19, not a class 'P'
### Hint 104.24-104.74, in type of '((op freq[P] : forall Elem : Type . Elem * MultiSet Elem -> Nat)
((var p : P),
(op marking : System -> Marking) (var sys1 : System)),
(op freq[P] : forall Elem : Type . Elem * MultiSet Elem -> Nat)
((var hp : P ->? P) (var p : P),
(op marking : System -> Marking) (var sys2 : System)))'
typename 'Nat' (28.38)
is not unifiable with type '_v1288 ->? Nat' (23.33)
### Hint 112.12, not a class 'HomSys'
### Hint 112.16, not a class 'HomSys'
### Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
### Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '((var h2 : HomSys), (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint 114.15-114.40, in type of '((op placesMap : HomSys -> P ->? P) (var h2 : HomSys),
(op placesMap : HomSys -> P ->? P) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint 114.15-114.40, in type of '((op placesMap : HomSys -> P ->? P) (var h2 : HomSys),
(op placesMap : HomSys -> P ->? P) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1018 Net (P ->? P)' (79.35)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint 114.44-114.79, in type of '((op transitionsMap : HomSys -> T ->? T) (var h2 : HomSys),
(op transitionsMap : HomSys -> T ->? T) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1516 System (P ->? P)' (102.54)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint 114.44-114.79, in type of '((op transitionsMap : HomSys -> T ->? T) (var h2 : HomSys),
(op transitionsMap : HomSys -> T ->? T) (var h1 : HomSys))'
typename '__->?__'
is not unifiable with type '_t1018 Net (P ->? P)' (79.35)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h1 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)
### Hint, in type of '(var h2 : HomSys)'
typename '_t1088' (93.8)
is not unifiable with type '_t366 (Set P)' (71.34)