Graphs.hascasl.output revision f905b9891657dd3eb454d98df87bb0d0cc3796d6
vars S, T : Type
types Bool;
Pred S := S ->? Unit;
Set S := S ->? Unit
ops True, False : Bool
ops emptySet : Set S;
{__} : S -> Set S;
__isIn__ : S * Set S ->? Unit;
__subset__ : Pred (Set (S) * Set (S));
__union__, __intersection__, __\\__ : Set S * Set S -> Set S;
__disjoint__ : Pred (Set (S) * Set (S));
__*__ : Set S * Set T -> Set (S * T);
__disjointUnion__ : Set S * Set S -> Set (S * Bool);
inl, inr : S -> S * Bool
forall x, x' : S; y : T; s, s' : Set S; t : Set T
. not x isIn emptySet
. x isIn { x' } <=> x = x'
. x isIn s <=> s x
. s subset s' <=> forall x : S . x isIn s => x isIn s'
. x isIn (s union s') <=> x isIn s \/ x isIn s'
. x isIn (s intersection s') <=> x isIn s /\ x isIn s'
. x isIn (s \\ s') <=> x isIn s /\ not x isIn s'
. s disjoint s' <=> s intersection s' = emptySet
. (x, y) isIn (s * t) <=> x isIn s /\ y isIn t
. inl x = (x, False)
. inr x = (x, True);
%% Type Constructors -----------------------------------------------------
Bool : Type
Set : Type -> Type := \ S : Type . S ->? Unit
%% Type Variables --------------------------------------------------------
S : Type %(var_1)%
T : Type %(var_2)%
%% Assumptions -----------------------------------------------------------
False : Bool %(op)%
True : Bool %(op)%
__*__
: forall S : Type; T : Type . Set S * Set T -> Set (S * T) %(op)%
__\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
__disjoint__ : forall S : Type . Pred (Set S * Set S) %(op)%
__disjointUnion__
: forall S : Type . Set S * Set S -> Set (S * Bool) %(op)%
__intersection__ : forall S : Type . Set S * Set S -> Set S %(op)%
__isIn__ : forall S : Type . S * Set S ->? Unit %(op)%
__subset__ : forall S : Type . Pred (Set S * Set S) %(op)%
__union__ : forall S : Type . Set S * Set S -> Set S %(op)%
emptySet : forall S : Type . Set S %(op)%
inl : forall S : Type . S -> S * Bool %(op)%
inr : forall S : Type . S -> S * Bool %(op)%
{__} : forall S : Type . S -> Set S %(op)%
%% Variables -------------------------------------------------------------
s : Set S
s' : Set S
t : Set T
x : S
x' : S
y : T
%% Sentences -------------------------------------------------------------
not x isIn emptySet
x isIn { x' } <=> x = x'
x isIn s <=> s x
s subset s' <=> forall x : S . x isIn s => x isIn s'
x isIn (s union s') <=> x isIn s \/ x isIn s'
x isIn (s intersection s') <=> x isIn s /\ x isIn s'
x isIn (s \\ s') <=> x isIn s /\ not x isIn s'
s disjoint s' <=> s intersection s' = emptySet
(x, y) isIn (s * t) <=> x isIn s /\ y isIn t
inl x = (x, False)
inr x = (x, True)
%% Diagnostics -----------------------------------------------------------
### Hint 1.6, is type variable 'S'
### Hint 1.8, is type variable 'T'
### Hint 3.19, rebound type variable 'S'
### Hint 3.8, redeclared type 'Pred'
### Hint 4.17, rebound type variable 'S'
### Hint 16.11, not a class 'S'
### Hint 16.14, not a class 'S'
### Hint 16.19, not a class 'T'
### Hint 16.24, not a kind 'Set (S)'
### Hint 16.27, not a kind 'Set (S)'
### Hint 16.37, not a kind 'Set (T)'
### Hint 20.32, not a class 'S'
### Hint 20.31, rebound variable 'x'