Graphs.hascasl.output revision a59f2017dfc311ece7afcea3e8a3ceceac77ba5a
var S : Type; T : Type
type Bool;
Pred : -Type -> Type := \ S : -Type . S ->? Unit;
Set : Type -> Type := \ S : Type . S ->? Unit;
op True, False : Bool;
op emptySet : Set S;
{__} : S -> Set S;
__isIn__ : S * Set S ->? Unit;
__subset__ : Pred (Set (S) * Set (S));
__union__, __intersection__, __\\__ : Set S * Set S -> Set S;
__disjoint__ : Pred (Set (S) * Set (S));
__*__ : Set S * Set T -> Set (S * T);
__disjointUnion__ : Set S * Set S -> Set (S * Bool);
inl, inr : S -> S * Bool;
forall x : S; x' : S; y : T; s : Set S; s' : Set S; t : Set T
. not (x isIn emptySet)
. (x isIn { x' }) <=> x = x'
. (x isIn s) <=> s x
. (s subset s') <=> (forall x : S . (x isIn s) => (x isIn s'))
. (x isIn (s union s')) <=> (x isIn s) \/ (x isIn s')
. (x isIn (s intersection s')) <=> (x isIn s) /\ (x isIn s')
. (x isIn (s \\ s')) <=> (x isIn s) /\ not (x isIn s')
. (s disjoint s') <=> (s intersection s') = emptySet
. ((x, y) isIn (s * t)) <=> (x isIn s) /\ (y isIn t)
. inl x = (x, False)
. inr x = (x, True)
%% Type Constructors -----------------------------------------------------
Bool : Type
Set : Type -> Type := \ S : Type . S ->? Unit
%% Type Variables --------------------------------------------------------
S : Type %(var_1)%
T : Type %(var_2)%
%% Assumptions -----------------------------------------------------------
False : Bool %(op)%
True : Bool %(op)%
__*__
: forall S : Type; T : Type . Set S * Set T -> Set (S * T) %(op)%
__\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
__disjoint__ : forall S : Type . Pred (Set S * Set S) %(op)%
__disjointUnion__
: forall S : Type . Set S * Set S -> Set (S * Bool) %(op)%
__intersection__ : forall S : Type . Set S * Set S -> Set S %(op)%
__isIn__ : forall S : Type . S * Set S ->? Unit %(op)%
__subset__ : forall S : Type . Pred (Set S * Set S) %(op)%
__union__ : forall S : Type . Set S * Set S -> Set S %(op)%
emptySet : forall S : Type . Set S %(op)%
inl : forall S : Type . S -> S * Bool %(op)%
inr : forall S : Type . S -> S * Bool %(op)%
{__} : forall S : Type . S -> Set S %(op)%
%% Variables -------------------------------------------------------------
s : Set S
s' : Set S
t : Set T
x : S
x' : S
y : T
%% Sentences -------------------------------------------------------------
not (x isIn emptySet)
(x isIn { x' }) <=> x = x'
(x isIn s) <=> s x
(s subset s') <=> (forall x : S . (x isIn s) => (x isIn s'))
(x isIn (s union s')) <=> (x isIn s) \/ (x isIn s')
(x isIn (s intersection s')) <=> (x isIn s) /\ (x isIn s')
(x isIn (s \\ s')) <=> (x isIn s) /\ not (x isIn s')
(s disjoint s') <=> (s intersection s') = emptySet
((x, y) isIn (s * t)) <=> (x isIn s) /\ (y isIn t)
inl x = (x, False)
inr x = (x, True)
%% Diagnostics -----------------------------------------------------------
### Hint 1.6, is type variable 'S'
### Hint 1.8, is type variable 'T'
### Hint 3.19, rebound type variable 'S'
### Hint 3.8, redeclared type 'Pred'
### Hint 4.17, rebound type variable 'S'
### Hint 16.11, not a class 'S'
### Hint 16.14, not a class 'S'
### Hint 16.19, not a class 'T'
### Hint 16.24, not a kind 'Set (S)'
### Hint 16.27, not a kind 'Set (S)'
### Hint 16.37, not a kind 'Set (T)'
### Hint 20.32, not a class 'S'
### Hint 20.31, rebound variable 'x'