Graphs.hascasl.output revision 6cb518d88084543c13aa7e56db767c14ee97ab77
vars S, T : Type
types Bool;
Pred S := S ->? Unit;
Set S := S ->? Unit
ops True, False : Bool
ops emptySet : Set S;
{__} : S -> Set S;
__isIn__ : S * Set S ->? Unit;
__subset__ : Pred (Set (S) * Set (S));
__union__, __intersection__, __\\__ : Set S * Set S -> Set S;
__disjoint__ : Pred (Set (S) * Set (S));
__*__ : Set S * Set T -> Set (S * T);
__disjointUnion__ : Set S * Set S -> Set (S * Bool);
inl, inr : S -> S * Bool
forall x, x' : S; y : T; s, s' : Set S; t : Set T
. not x isIn emptySet
. x isIn { x' } <=> x = x'
. x isIn s <=> s x
. s subset s' <=> forall x : S . x isIn s => x isIn s'
. x isIn (s union s') <=> x isIn s \/ x isIn s'
. x isIn (s intersection s') <=> x isIn s /\ x isIn s'
. x isIn (s \\ s') <=> x isIn s /\ not x isIn s'
. s disjoint s' <=> s intersection s' = emptySet
. (x, y) isIn (s * t) <=> x isIn s /\ y isIn t
. inl x = (x, False)
. inr x = (x, True);
types
Bool : Type;
Set : Type -> Type := \ S : Type . S ->? Unit
vars
S : Type %(var_1)%;
T : Type %(var_2)%
op False : Bool %(op)%
op True : Bool %(op)%
op __*__ : forall S : Type; T : Type . Set S * Set T -> Set (S * T)
%(op)%
op __\\__ : forall S : Type . Set S * Set S -> Set S %(op)%
op __disjoint__ : forall S : Type . Pred (Set S * Set S) %(op)%
op __disjointUnion__ : forall S : Type
. Set S * Set S -> Set (S * Bool)
%(op)%
op __intersection__ : forall S : Type . Set S * Set S -> Set S
%(op)%
op __isIn__ : forall S : Type . S * Set S ->? Unit %(op)%
op __subset__ : forall S : Type . Pred (Set S * Set S) %(op)%
op __union__ : forall S : Type . Set S * Set S -> Set S %(op)%
op emptySet : forall S : Type . Set S %(op)%
op inl : forall S : Type . S -> S * Bool %(op)%
op inr : forall S : Type . S -> S * Bool %(op)%
op {__} : forall S : Type . S -> Set S %(op)%
vars
s : Set S;
s' : Set S;
t : Set T;
x : S;
x' : S;
y : T
. not x isIn emptySet
. x isIn { x' } <=> x = x'
. x isIn s <=> s x
. s subset s' <=> forall x : S . x isIn s => x isIn s'
. x isIn (s union s') <=> x isIn s \/ x isIn s'
. x isIn (s intersection s') <=> x isIn s /\ x isIn s'
. x isIn (s \\ s') <=> x isIn s /\ not x isIn s'
. s disjoint s' <=> s intersection s' = emptySet
. (x, y) isIn (s * t) <=> x isIn s /\ y isIn t
. inl x = (x, False)
. inr x = (x, True)
### Hint 1.6, is type variable 'S'
### Hint 1.8, is type variable 'T'
### Hint 3.19, rebound type variable 'S'
### Hint 3.8, redeclared type 'Pred'
### Hint 4.17, rebound type variable 'S'
### Hint 16.11, not a class 'S'
### Hint 16.14, not a class 'S'
### Hint 16.19, not a class 'T'
### Hint 16.24, not a kind 'Set (S)'
### Hint 16.27, not a kind 'Set (S)'
### Hint 16.37, not a kind 'Set (T)'
### Hint 20.32, not a class 'S'
### Hint 20.31, rebound variable 'x'