Classical.hascasl revision bb5f80fa01a1783a3e84ced6fa4c4c1a74da211d
. __=__ = __<=>__
. true = ()
vars p, q: Logical
. p /\ q = p res q
. (p => q) = ((\ . p) =e= \ . p /\ q)
. (p <=> q) = ((p => q) /\ (q => p))
vars t : Type; pr : Pred t
. (forall y : t . pr y) = ((\ y : t . pr y) =e= \ y : t . true)
. false = forall a : Logical . a()
. not p <=> p => false
. p \/ q <=> forall a : Logical . (p => a()) /\ (q => a()) => a()
. (exists y : t . pr y) = forall a : Logical
. (forall y : t . pr y => a()) => a()
vars a, b: t
. a = b <=> (def a => a =e= b) /\ (def b => def a)
op choose : Pred t ->? t
. choose pr = a <=> forall y : t . pr y <=> a = y
op epsilon : Pred t -> t
. (exists x : t . pr x) => pr(epsilon pr)
. p \/ not p %implied