Unify.hs revision ac19f8695aa1b2d2d1cd1319da2530edd8f46a96
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : experimental
Portability : portable
substitution and unification of types
-}
module HasCASL.Unify where
import HasCASL.As
import HasCASL.AsUtils
import Common.PrettyPrint
import Common.Id
import HasCASL.Le
import Common.Lib.State
import Common.Lib.Parsec
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Result
import Data.List
import Data.Maybe
-- | vars
varsOf :: Type -> Set.Set TypeArg
varsOf = leaves (>0)
-- | vars or other ids
leaves :: (Int -> Bool) -> Type -> Set.Set TypeArg
leaves b t =
case t of
TypeName j k i -> if b(i)
then Set.single $ TypeArg j k Other []
else Set.empty
TypeAppl t1 t2 -> leaves b t1 `Set.union` leaves b t2
KindedType tk _ _ -> leaves b tk
LazyType tl _ -> leaves b tl
ProductType l _ -> Set.unions $ map (leaves b) l
FunType t1 _ t2 _ -> leaves b t1 `Set.union` leaves b t2
_ -> error ("leaves: " ++ show t)
generalize :: TypeScheme -> TypeScheme
generalize (TypeScheme _ q@(_ :=> ty) ps) =
TypeScheme (Set.toList $ varsOf ty) q ps
-- | composition (reversed: first substitution first!)
compSubst :: Subst -> Subst -> Subst
compSubst s1 s2 = Map.union (Map.map (subst s2) s1) s2
-- | unifiability of type schemes including instantiation with fresh variables
-- (and looking up type aliases)
isUnifiable :: TypeMap -> Int -> TypeScheme -> TypeScheme -> Bool
isUnifiable tm c = asSchemes c (unify tm)
-- | test if second scheme is a substitution instance
instScheme :: TypeMap -> Int -> TypeScheme -> TypeScheme -> Bool
instScheme tm c = asSchemes c (subsume tm)
-- | lift 'State' Int to 'State' Env
toEnvState :: State Int a -> State Env a
toEnvState p =
do s <- get
let (r, c) = runState p $ counter s
put s { counter = c }
return r
toSchemes :: (Type -> Type -> a) -> TypeScheme -> TypeScheme -> State Int a
toSchemes f sc1 sc2 =
do t1 <- freshInst sc1
t2 <- freshInst sc2
return $ f t1 t2
asSchemes :: Int -> (Type -> Type -> a) -> TypeScheme -> TypeScheme -> a
asSchemes c f sc1 sc2 = fst $ runState (toSchemes f sc1 sc2) c
-- -------------------------------------------------------------------------
freshInst :: TypeScheme -> State Int Type
freshInst (TypeScheme tArgs (_ :=> t) _) =
do m <- mkSubst tArgs
return $ subst m t
freshVar :: State Int Id
freshVar =
do c <- get
put (c + 1)
return $ simpleIdToId $ mkSimpleId ("_var_" ++ show c)
mkSingleSubst :: TypeArg -> State Int Subst
mkSingleSubst tv@(TypeArg _ k _ _) =
do ty <- freshVar
return $ Map.single tv $ TypeName ty k 1
mkSubst :: [TypeArg] -> State Int Subst
mkSubst tas = do ms <- mapM mkSingleSubst tas
return $ Map.unions ms
type Subst = Map.Map TypeArg Type
eps :: Subst
eps = Map.empty
class Unifiable a where
subst :: Subst -> a -> a
match :: TypeMap -> (Bool, a) -> (Bool, a) -> Result Subst
-- | most general unifier via 'match'
-- where both sides may contribute substitutions
mgu :: Unifiable a => TypeMap -> a -> a -> Result Subst
mgu tm a b = match tm (True, a) (True, b)
unify :: Unifiable a => TypeMap -> a -> a -> Bool
unify tm a b = isJust $ maybeResult $ mgu tm a b
subsume :: Unifiable a => TypeMap -> a -> a -> Bool
subsume tm a b = isJust $ maybeResult $ match tm (False, a) (True, b)
equalSubs :: Unifiable a => TypeMap -> a -> a -> Bool
equalSubs tm a b = subsume tm a b && subsume tm b a
idsOf :: (Int -> Bool) -> Type -> Set.Set TypeId
idsOf b = Set.image ( \ (TypeArg j _ _ _) -> j) . leaves b
occursIn :: TypeMap -> TypeId -> Type -> Bool
occursIn tm i = Set.any (relatedTypeIds tm i) . idsOf (const True)
relatedTypeIds :: TypeMap -> TypeId -> TypeId -> Bool
relatedTypeIds tm i1 i2 =
not $ Set.disjoint (allRelIds tm i1) $ allRelIds tm i2
allRelIds :: TypeMap -> TypeId -> Set.Set TypeId
allRelIds tm i = Set.union (superIds tm i) $ subIds tm i
rename :: (TypeId -> Kind -> Int -> Type) -> Type -> Type
rename m t = case t of
TypeName i k n -> m i k n
TypeAppl t1 t2 ->
TypeAppl (rename m t1) (rename m t2)
TypeToken _ -> t
BracketType b l ps ->
BracketType b (map (rename m) l) ps
KindedType tk k ps ->
KindedType (rename m tk) k ps
MixfixType l -> MixfixType $ map (rename m) l
LazyType tl ps -> LazyType (rename m tl) ps
ProductType l ps -> ProductType (map (rename m) l) ps
FunType t1 a t2 ps -> FunType (rename m t1) a (rename m t2) ps
instance Unifiable Type where
subst m = rename (\ i k n ->
case Map.lookup (TypeArg i k Other []) m of
Just s -> s
_ -> TypeName i k n)
match m (a, s) (b, t) = mm m (a, unalias m s) (b, unalias m t)
where
mm tm t1 (b2, LazyType t2 _) = mm tm t1 (b2, t2)
mm tm (b1, LazyType t1 _) t2 = mm tm (b1, t1) t2
mm tm t1 (b2, KindedType t2 _ _) = mm tm t1 (b2, t2)
mm tm (b1, KindedType t1 _ _) t2 = mm tm (b1, t1) t2
mm tm (b1, t1@(TypeName i1 k1 v1)) (b2, t2@(TypeName i2 k2 v2)) =
if relatedTypeIds tm i1 i2
then return eps
else if v1 > 0 && b1 then return $
Map.single (TypeArg i1 k1 Other []) t2
else if v2 > 0 && b2 then return $
Map.single (TypeArg i2 k2 Other []) t1
else uniResult "typename" i1
"is not unifiable with typename" i2
mm tm (b1, TypeName i1 k1 v1) (_, t2) =
if v1 > 0 && b1 then
if occursIn tm i1 t2 then
uniResult "var" i1 "occurs in" t2
else return $
Map.single (TypeArg i1 k1 Other []) t2
else uniResult "typename" i1
"is not unifiable with type" t2
mm tm t2 t1@(_, TypeName _ _ _) = mm tm t1 t2
mm tm (b1, TypeAppl t1 t2) (b2, TypeAppl t3 t4) =
match tm (b1, (t1, t2)) (b2, (t3, t4))
mm tm (b1, ProductType p1 _) (b2, ProductType p2 _) =
match tm (b1, p1) (b2, p2)
mm tm (b1, FunType t1 _ t2 _) (b2, FunType t3 _ t4 _) =
match tm (b1, (t1, t2)) (b2, (t3, t4))
mm _ (_,t1) (_,t2) = uniResult "type" t1
"is not unifiable with type" t2
showPrettyWithPos :: (PrettyPrint a, PosItem a) => a -> ShowS
showPrettyWithPos a = let p = getMyPos a
s = ("'" ++) . showPretty a . ("'" ++)
n = sourceName p in
if nullPos == p then s else s . (" (" ++) .
(if null n then id else (n ++) . (", " ++))
. shows (sourceLine p)
. ("." ++) . shows (sourceColumn p)
. (")" ++)
uniResult :: (PrettyPrint a, PosItem a, PrettyPrint b, PosItem b) =>
String -> a -> String -> b -> Result Subst
uniResult s1 a s2 b =
Result [Diag Hint ("in type\n" ++ " " ++ s1 ++ " " ++
showPrettyWithPos a "\n " ++ s2 ++ " " ++
showPrettyWithPos b "") nullPos] Nothing
instance (Unifiable a, Unifiable b) => Unifiable (a, b) where
subst s (t1, t2) = (subst s t1, subst s t2)
match tm (b1, (t1, t2)) (b2, (t3, t4)) =
let r1@(Result _ m1) = match tm (b1, t1) (b2, t3) in
case m1 of
Nothing -> r1
Just s1 -> let r2@(Result _ m2) =
match tm (b1, if b1 then subst s1 t2 else t2)
(b2, if b2 then subst s1 t4 else t4)
in case m2 of
Nothing -> r2
Just s2 -> return $ compSubst s1 s2
instance (PrettyPrint a, PosItem a, Unifiable a) => Unifiable [a] where
subst s = map (subst s)
match _ (_, []) (_, []) = return eps
match tm (b1, a1:r1) (b2, a2:r2) = match tm (b1, (a1, r1)) (b2, (a2, r2))
match tm (b1, []) l = match tm l (b1, [])
match _ (_, (a:_)) (_, []) = uniResult "type component" a
"is not unifiable with the empty list"
(mkSimpleId "[]")
instance (PrettyPrint a, PosItem a, Unifiable a) => Unifiable (Maybe a) where
subst s = fmap (subst s)
match _ (_, Nothing) _ = return eps
match _ _ (_, Nothing) = return eps
match tm (b1, Just a1) (b2, Just a2) = match tm (b1, a1) (b2, a2)
unalias :: TypeMap -> Type -> Type
unalias tm = fst . expandAlias tm
expandAlias :: TypeMap -> Type -> (Type, Bool)
expandAlias tm t =
let (ps, as, ta, b) = expandAliases tm t in
if b && length ps == length as then
(subst (Map.fromList (zip ps $ reverse as)) ta, b)
else (ta, b)
expandAliases :: TypeMap -> Type -> ([TypeArg], [Type], Type, Bool)
expandAliases tm t@(TypeName i _ _) =
case Map.lookup i tm of
Just (TypeInfo _ _ _
(AliasTypeDefn (TypeScheme l (_ :=> ts) _))) ->
(l, [], unalias tm ts, True)
Just (TypeInfo _ _ _
(Supertype _ (TypeScheme l (_ :=> ts) _) _)) ->
(l, [], unalias tm ts, True)
_ -> ([], [], t, False)
expandAliases tm (TypeAppl t1 t2) =
let (ps, as, ta, b) = expandAliases tm t1
(t3, b2) = expandAlias tm t2
in if b then
(ps, t3:as, ta, b) -- reverse later on
else ([], [], TypeAppl t1 t3, b2)
expandAliases tm (FunType t1 a t2 ps) =
let (t3, b1) = expandAlias tm t1
(t4, b2) = expandAlias tm t2
in ([], [], FunType t3 a t4 ps, b1 || b2)
expandAliases tm (ProductType ts ps) =
let tls = map (expandAlias tm) ts
in ([], [], ProductType (map fst tls) ps, any snd tls)
expandAliases tm (LazyType t ps) =
let (newT, b) = expandAlias tm t
in ([], [], LazyType newT ps, b)
expandAliases tm (KindedType t k ps) =
let (newT, b) = expandAlias tm t
in ([], [], KindedType newT k ps, b)
expandAliases _ t = ([], [], t, False)
-- | super type ids
superIds :: TypeMap -> Id -> Set.Set Id
superIds tm = supIds tm Set.empty . Set.single
subIds :: TypeMap -> Id -> Set.Set Id
subIds tm i = foldr ( \ j s ->
if Set.member i $ superIds tm j then
Set.insert j s else s) Set.empty $ Map.keys tm
supIds :: TypeMap -> Set.Set Id -> Set.Set Id -> Set.Set Id
supIds tm known new =
if Set.isEmpty new then known else
let more = Set.unions $ map superTypeToId $
concatMap ( \ i -> superTypes
$ Map.findWithDefault starTypeInfo i tm)
$ Set.toList new
newKnown = Set.union known new
in supIds tm newKnown (more Set.\\ newKnown)
starTypeInfo :: TypeInfo
starTypeInfo = TypeInfo star [] [] NoTypeDefn
superTypeToId :: Type -> Set.Set Id
superTypeToId t =
case t of
TypeName i _ _ -> Set.single i
_ -> Set.empty