Cross Reference: /hets/HasCASL/TypeInference.hs
TypeInference.hs revision 9db48b4604636bfdf03e60890fc094b7bec775dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
{- HetCATS/HasCASL/TypeInference.hs
$Id$
Author: Christian Maeder
Year: 2002
polymorphic type inference (with type classes) for terms
limitiations:
- no subtyping
- ignore anonymous downsets as classes
- an intersection class is a (flat) set of class names (without universe)
- no mixfix analysis for types yet
- use predicate types as in Wadler/Blott 1989 (ad-hoc polymorphism)?
to do:
- convert As.Type to Le.Type
plan:
- treat all arrows equal for unification and type inference
- and also ignore lazy annotations!
simply adapt the following
-- Part of `Typing Haskell in Haskell', version of November 23, 2000
-- Copyright (c) Mark P Jones and the Oregon Graduate Institute
-- of Science and Technology, 1999-2000
--
-- This program is distributed as Free Software under the terms
-- in the file "License" that is included in the distribution
-- of this software, copies of which may be obtained from:
-- http://www.cse.ogi.edu/~mpj/thih/
-}
module TypeInference where
import Id
import Le
import As
import AsToLe
import FiniteMap
import List -- (nub, (\\), intersect, union, partition)
import Monad(msum)
import MonadState
enumId :: Int -> Id
enumId n = Id[Token "v" nullPos, Token (show n) nullPos][][]
tArrow :: Le.Type
tArrow = TCon (Tycon (Id [Token "->?" nullPos][][])
(Kfun star (Kfun star star)))
infixr 4 `fn`
fn :: Le.Type -> Le.Type -> Le.Type
a `fn` b = TAp (TAp tArrow a) b
class HasKind t where
kind :: t -> Le.Kind
instance HasKind Tyvar where
kind (Tyvar _ k) = k
instance HasKind Tycon where
kind (Tycon _ k) = k
instance HasKind Le.Type where
kind (TCon tc) = kind tc
kind (TVar u) = kind u
kind (TAp t _) = case (kind t) of
Kfun _ k -> k
Star _ -> error "wrong kind for TAp"
kind (TGen _) = error "no kind for TGen"
-----------------------------------------------------------------------------
-- Subst: Substitutions
-----------------------------------------------------------------------------
type Subst = FiniteMap Tyvar Le.Type
nullSubst :: Subst
nullSubst = emptyFM
(+->) :: Tyvar -> Le.Type -> Subst
u +-> t = unitFM u t
class SubstApplicable t where
apply :: Subst -> t -> t
tv :: t -> [Tyvar]
instance SubstApplicable Le.Type where
apply s (TVar u) = case lookupFM s u of
Just t -> t
Nothing -> TVar u
apply s (TAp l r) = TAp (apply s l) (apply s r)
apply _ t = t
tv (TVar u) = [u]
tv (TAp l r) = tv l `union` tv r
tv _ = []
instance SubstApplicable a => SubstApplicable [a] where
apply s = map (apply s)
tv = nub . concat . map tv
infixr 4 @@
(@@) :: Subst -> Subst -> Subst
s1 @@ s2 = plusFM (mapFM (const $ apply s1) s2) s1
-----------------------------------------------------------------------------
-- Unify: Unification
-----------------------------------------------------------------------------
mgu, match :: Monad m => Le.Type -> Le.Type -> m Subst
mgum :: Monad m => Bool -> Le.Type -> Le.Type -> m Subst
mgu = mgum False
match = mgum True
mgum b (TAp l r) (TAp l' r') = do s1 <- mgum b l l'
s2 <- mgum b (apply s1 r)
(if b then r' else apply s1 r')
return (s2 @@ s1)
mgum _ (TVar u) t = varBind u t
mgum b t (TVar u) = if b then fail
"a non-variable does not match a variable"
else varBind u t
mgum _ (TCon tc1) (TCon tc2)
| tc1==tc2 = return nullSubst
mgum b _ _ = fail ("types do not " ++ if b then "match" else "unify")
varBind :: Monad m => Tyvar -> Le.Type -> m Subst
varBind u t | t == TVar u = return nullSubst
| u `elem` tv t = fail "occurs check fails"
| kind u /= kind t = fail "kinds do not match"
| otherwise = return (u +-> t)
-----------------------------------------------------------------------------
-- Pred: Predicates
-----------------------------------------------------------------------------
instance SubstApplicable t => SubstApplicable (Qual t) where
apply s (ps :=> t) = apply s ps :=> apply s t
tv (ps :=> t) = tv ps `union` tv t
instance SubstApplicable Pred where
apply s (IsIn i t) = IsIn i (apply s t)
tv (IsIn _ t) = tv t
mguPred, matchPred :: Pred -> Pred -> Maybe Subst
mguPred = liftToPred mgu
matchPred = liftToPred match
liftToPred :: Monad m => (Le.Type -> Le.Type -> m Subst)
-> Pred -> Pred -> m Subst
liftToPred m (IsIn i t) (IsIn i' t')
| i == i' = m t t'
| otherwise = fail "classes differ"
defined :: Maybe a -> Bool
defined (Just _) = True
defined Nothing = False
type EnvTransformer = ClassEnv -> Maybe ClassEnv
infixr 5 <:>
(<:>) :: EnvTransformer -> EnvTransformer -> EnvTransformer
(f <:> g) ce = do ce' <- f ce
g ce'
addClass :: Id -> [Id] -> EnvTransformer
addClass i is ce
| i `elemFM` ce = fail "class already defined"
| not $ null $ is \\ keysFM ce = fail "superclass not defined"
| otherwise = return (addToFM ce i (is, []))
addPreludeClasses :: EnvTransformer
addPreludeClasses = addCoreClasses
addCoreClasses :: EnvTransformer
addCoreClasses = const Nothing
addInst :: [Pred] -> Pred -> EnvTransformer
addInst ps p@(IsIn i _) ce
| not $ i `elemFM` ce = fail "no class for instance"
| any (overlap p) qs = fail "overlapping instance"
| otherwise = return (addToFM ce i c)
where its = insts ce i
qs = [ q | (_ :=> q) <- its ]
c = (super ce i, (ps:=>p) : its)
overlap :: Pred -> Pred -> Bool
overlap p q = defined (mguPred p q)
exampleInsts :: EnvTransformer
exampleInsts = addPreludeClasses
-----------------------------------------------------------------------------
bySuper :: ClassEnv -> Pred -> [Pred]
bySuper ce p@(IsIn i t)
= p : concat [ bySuper ce (IsIn i' t) | i' <- super ce i ]
byInst :: ClassEnv -> Pred -> Maybe [Pred]
byInst ce p@(IsIn i _) = msum [ tryInst it | it <- insts ce i ]
where tryInst (ps :=> h) = do u <- matchPred h p
Just (map (apply u) ps)
entail :: ClassEnv -> [Pred] -> Pred -> Bool
entail ce ps p = any (p `elem`) (map (bySuper ce) ps) ||
case byInst ce p of
Nothing -> False
Just qs -> all (entail ce ps) qs
-----------------------------------------------------------------------------
inHnf :: Pred -> Bool
inHnf (IsIn _ t) = hnf t
where hnf (TVar _) = True
hnf (TCon _) = False
hnf (TAp f _) = hnf f
hnf (TGen _) = error "no hnf for TGen"
toHnfs :: Monad m => ClassEnv -> [Pred] -> m [Pred]
toHnfs ce ps = do pss <- mapM (toHnf ce) ps
return (concat pss)
toHnf :: Monad m => ClassEnv -> Pred -> m [Pred]
toHnf ce p | inHnf p = return [p]
| otherwise = case byInst ce p of
Nothing -> fail "context reduction"
Just ps -> toHnfs ce ps
simplify :: ClassEnv -> [Pred] -> [Pred]
simplify ce = loop []
where loop rs [] = rs
loop rs (p:ps) | entail ce (rs++ps) p = loop rs ps
| otherwise = loop (p:rs) ps
reduce :: Monad m => ClassEnv -> [Pred] -> m [Pred]
reduce ce ps = do qs <- toHnfs ce ps
return (simplify ce qs)
scEntail :: ClassEnv -> [Pred] -> Pred -> Bool
scEntail ce ps p = any (p `elem`) (map (bySuper ce) ps)
-----------------------------------------------------------------------------
-- Scheme: Type schemes
-----------------------------------------------------------------------------
instance SubstApplicable Scheme where
apply s (Scheme ks qt) = Scheme ks (apply s qt)
tv (Scheme _ qt) = tv qt
quantify :: [Tyvar] -> Qual Le.Type -> Scheme
quantify vs qt = Scheme ks (apply (listToFM s) qt)
where vs' = [ v | v <- tv qt, v `elem` vs ]
ks = map kind vs'
s = zip vs' (map TGen [0..])
toScheme :: Le.Type -> Scheme
toScheme t = Scheme [] ([] :=> t)
-----------------------------------------------------------------------------
-- TIMonad: Type inference monad
-----------------------------------------------------------------------------
newtype TI a = TI {ti :: Subst -> Int -> (Subst, Int, a)}
instance Monad TI where
return x = TI (\s n -> (s,n,x))
TI f >>= g = TI (\s n -> case f s n of
(s',m,x) -> let TI gx = g x
in gx s' m)
runTI :: Int -> TI a -> a
runTI n (TI f) = x where (_, _, x) = f nullSubst n
freshInst :: Scheme -> TIL (Qual Le.Type)
freshInst (Scheme ks qt) = do ts <- mapM newTVar ks
return (inst ts qt)
class Instantiate t where
inst :: [Le.Type] -> t -> t
instance Instantiate Le.Type where
inst ts (TAp l r) = TAp (inst ts l) (inst ts r)
inst ts (TGen n) = ts !! n
inst _ t = t
instance Instantiate a => Instantiate [a] where
inst ts = map (inst ts)
instance Instantiate t => Instantiate (Qual t) where
inst ts (ps :=> t) = inst ts ps :=> inst ts t
instance Instantiate Pred where
inst ts (IsIn c t) = IsIn c (inst ts t)
type TIL = StateT (Subst, Int) []
newTVar :: Le.Kind -> TIL Le.Type
newTVar k = do (s, n) <- get
put (s, n + 1)
return $ TVar (Tyvar (enumId n) k)
getSubst :: TIL Subst
getSubst = gets fst
unify :: Le.Type -> Le.Type -> TIL ()
unify t1 t2 = do s <- getSubst
u <- mgu (apply s t1) (apply s t2)
extSubst u
extSubst :: Subst -> TIL ()
extSubst s' = modify (\ (s, n) -> (s'@@s, n))
tiTerm :: ClassEnv -> Assumps -> As.Term -> TIL (Qual Le.Type, Le.Term)
tiTerm _ as (TermToken t) = let i = simpleIdToId t
in
do sc@(Scheme ks qs) <- lift (lookUp as i)
ts <- mapM newTVar ks
return (inst ts qs, BaseName i sc ts)
tiTerm ce as (ApplTerm f a _) =
do (q1 :=> t1, e1) <- tiTerm ce as f
(q2 :=> t2, e2) <- tiTerm ce as a
t3 <- newTVar star
unify t1 (t2 `fn` t3)
return ((q1 ++ q2) :=> t3, Application e1 e2)
{-
-----------------------------------------------------------------------------
-- TIMain: Type Inference Algorithm
-----------------------------------------------------------------------------
-- Infer: Basic definitions for type inference
-----------------------------------------------------------------------------
type Infer e t = ClassEnv -> Assumps -> e -> TI (Qual t)
-----------------------------------------------------------------------------
-- Pat: Patterns
-----------------------------------------------------------------------------
data Pat = PVar Id
| PWildcard
| PAs Id Pat
| PCon Assumps [Pat]
tiPat :: Pat -> TI (Qual Le.Type, Assumps)
tiPat (PVar i) = do v <- newTVar star
return ([] :=> v, unitFM (toScheme v))
tiPat PWildcard = do v <- newTVar star
return ([], [], v)
tiPat (PAs i pat) = do (ps, as, t) <- tiPat pat
return (ps, (i:>:toScheme t):as, t)
tiPat (PCon (_:>:sc) pats) = do (ps,as,ts) <- tiPats pats
t' <- newTVar star
(qs :=> t) <- freshInst sc
unify t (foldr fn t' ts)
return (ps++qs, as, t')
tiPats :: [Pat] -> TI (Qual [Le.Type], Assumps)
tiPats pats = do psasts <- mapM tiPat pats
let ps = concat [ ps' | (ps',_,_) <- psasts ]
as = concat [ as' | (_,as',_) <- psasts ]
ts = [ t | (_,_,t) <- psasts ]
return (ps, as, ts)
-----------------------------------------------------------------------------
data Expr = Var Id
| Const Assumps
| Ap Expr Expr
| Let BindGroup Expr
tiExpr :: Infer Expr Le.Type
tiExpr _ as (Var i) = do sc <- find i as
(ps :=> t) <- freshInst sc
return (ps, t)
tiExpr _ _ (Const (_:>:sc)) = do (ps :=> t) <- freshInst sc
return (ps, t)
tiExpr ce as (Ap e f) = do (ps,te) <- tiExpr ce as e
(qs,tf) <- tiExpr ce as f
t <- newTVar star
unify (tf `fn` t) te
return (ps++qs, t)
tiExpr ce as (Let bg e) = do (ps, as') <- tiBindGroup ce as bg
(qs, t) <- tiExpr ce (as' ++ as) e
return (ps ++ qs, t)
-----------------------------------------------------------------------------
type Alt = ([Pat], Expr)
tiAlt :: Infer Alt Le.Type
tiAlt ce as (pats, e) = do (ps, as', ts) <- tiPats pats
(qs,t) <- tiExpr ce (as'++as) e
return (ps++qs, foldr fn t ts)
tiAlts :: ClassEnv -> [Assump] -> [Alt] -> Le.Type -> TI [Pred]
tiAlts ce as alts t = do psts <- mapM (tiAlt ce as) alts
mapM (unify t) (map snd psts)
return (concat (map fst psts))
-----------------------------------------------------------------------------
split :: Monad m => ClassEnv -> [Tyvar] -> [Tyvar] -> [Pred]
-> m ([Pred], [Pred])
split ce fs gs ps = do ps' <- reduce ce ps
let (ds, rs) = partition (all (`elem` fs) . tv) ps'
rs' <- defaultedPreds ce (fs++gs) rs
return (ds, rs \\ rs')
type Ambiguity = (Tyvar, [Pred])
ambiguities :: ClassEnv -> [Tyvar] -> [Pred] -> [Ambiguity]
ambiguities _ vs ps = [ (v, filter (elem v . tv) ps) | v <- tv ps \\ vs ]
numClasses :: [Id]
numClasses = []
stdClasses :: [Id]
stdClasses = []
candidates :: ClassEnv -> Ambiguity -> [Le.Type]
candidates _ _ = []
withDefaults :: Monad m => ([Ambiguity] -> [Le.Type] -> a)
-> ClassEnv -> [Tyvar] -> [Pred] -> m a
withDefaults f ce vs ps
| any null tss = fail "cannot resolve ambiguity"
| otherwise = return (f vps (map head tss))
where vps = ambiguities ce vs ps
tss = map (candidates ce) vps
defaultedPreds :: Monad m => ClassEnv -> [Tyvar] -> [Pred] -> m [Pred]
defaultedPreds = withDefaults (\vps _ -> concat (map snd vps))
-----------------------------------------------------------------------------
type Expl = (Id, Scheme, [Alt])
tiExpl :: ClassEnv -> [Assump] -> Expl -> TI [Pred]
tiExpl ce as (_, sc, alts)
= do (qs :=> t) <- freshInst sc
ps <- tiAlts ce as alts t
s <- getSubst
let qs' = apply s qs
t' = apply s t
fs = tv (apply s as)
gs = tv t' \\ fs
sc' = quantify gs (qs':=>t')
ps' = filter (not . entail ce qs') (apply s ps)
(ds,rs) <- split ce fs gs ps'
if sc /= sc' then
fail "signature too general"
else if not (null rs) then
fail "context too weak"
else
return ds
-----------------------------------------------------------------------------
type Impl = (Id, [Alt])
restricted :: [Impl] -> Bool
restricted bs = any simple bs
where simple (_, alts) = any (null . fst) alts
tiImpls :: Infer [Impl] [Assump]
tiImpls ce as bs = do ts <- mapM (\_ -> newTVar star) bs
let is = map fst bs
scs = map toScheme ts
as' = zipWith (:>:) is scs ++ as
altss = map snd bs
pss <- sequence (zipWith (tiAlts ce as') altss ts)
s <- getSubst
let ps' = apply s (concat pss)
ts' = apply s ts
fs = tv (apply s as)
vss = map tv ts'
gs = foldr1 union vss \\ fs
(ds,rs) <- split ce fs (foldr1 intersect vss) ps'
if restricted bs then
let gs' = gs \\ tv rs
scs' = map (quantify gs' . ([]:=>)) ts'
in return (ds++rs, zipWith (:>:) is scs')
else
let scs' = map (quantify gs . (rs:=>)) ts'
in return (ds, zipWith (:>:) is scs')
-----------------------------------------------------------------------------
type BindGroup = ([Expl], [[Impl]])
tiBindGroup :: Infer BindGroup [Assump]
tiBindGroup ce as (es,iss) =
do let as' = [ v:>:sc | (v,sc,alts) <- es ]
(ps, as'') <- tiSeq tiImpls ce (as'++as) iss
qss <- mapM (tiExpl ce (as''++as'++as)) es
return (ps++concat qss, as''++as')
tiSeq :: Infer bg [Assump] -> Infer [bg] [Assump]
tiSeq _ _ _ [] = return ([],[])
tiSeq ti ce as (bs:bss) = do (ps,as') <- ti ce as bs
(qs,as'') <- tiSeq ti ce (as'++as) bss
return (ps++qs, as''++as')
-----------------------------------------------------------------------------
-- TIProg: Type Inference for Whole Programs
-----------------------------------------------------------------------------
type Program = [BindGroup]
tiProgram :: ClassEnv -> [Assump] -> Program -> [Assump]
tiProgram ce as bgs = runTI $
do (ps, as') <- tiSeq tiBindGroup ce as bgs
s <- getSubst
rs <- reduce ce (apply s ps)
return (apply s as')
-----------------------------------------------------------------------------
-}