Cross Reference: /hets/HasCASL/TypeAna.hs
TypeAna.hs revision 8dcc70ff9afdfe4aff258676718677a4d7076fd0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : maeder@tzi.de
Stability : experimental
Portability : portable
analyse types
-}
module HasCASL.TypeAna where
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Le
import HasCASL.ClassAna
import HasCASL.TypeMixAna
import HasCASL.Unify
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.Id
import Common.Result
import Common.PrettyPrint
import Data.List as List
import Data.Maybe
import Control.Exception(assert)
-- * infer kind
-- | inspect types and classes only
type TypeEnv = Env
-- | extract kinds of type identifier
getIdKind :: TypeEnv -> Id -> Result ((RawKind, [Kind]), Type)
getIdKind te i =
case Map.lookup i $ localTypeVars te of
Nothing -> case Map.lookup i $ typeMap te of
Nothing -> mkError "unknown type" i
Just (TypeInfo rk l _ _) -> return ((rk, l), TypeName i rk 0)
Just (TypeVarDefn rk vk c) -> assert (c > 0) $
return ((rk, [toKind vk]), TypeName i rk c)
-- | extract kinds of co- or invariant type identifiers
getCoVarKind :: Maybe Bool -> TypeEnv -> Id -> Result ((RawKind, [Kind]), Type)
getCoVarKind b te i = do
((rk, l), ty) <- getIdKind te i
case (rk, b) of
(ExtKind ek ContraVar _, Just True) -> Result
[mkDiag Hint "wrong contravariance of" i] $ Just ((ek, []), ty)
(ExtKind ek CoVar _, Just False) -> Result
[mkDiag Hint "wrong covariance of" i] $ Just ((ek, []), ty)
_ -> return ((invertKindVariance False rk,
map (invertKindVariance False) $
keepMinKinds (classMap te) l), ty)
-- | check if there is at least one solution
subKinds :: DiagKind -> ClassMap -> Type -> Kind -> [Kind] -> [Kind]
-> Result [Kind]
subKinds dk cm ty sk ks res =
if any ( \ k -> lesserKind cm k sk) ks then return res
else Result [Diag dk
("no kind found for '" ++ showPretty ty "'" ++
if null ks then "" else expected sk $ head ks)
$ posOfType ty] $ Just []
-- | infer all minimal kinds
inferKinds :: Maybe Bool -> Type -> TypeEnv -> Result ((RawKind, [Kind]), Type)
inferKinds b ty te@Env{classMap = cm} = let
resu = case ty of
TypeName i _ _ -> getCoVarKind b te i
TypeAppl t1 t2 -> do
((rk, ks), t3) <- inferKinds b t1 te
case rk of
FunKind rarg rr _ -> do
((_, l), t4) <- case rarg of
ExtKind _ ContraVar _ ->
inferKinds (fmap not b) t2 te
ExtKind _ CoVar _ ->
inferKinds b t2 te
_ -> inferKinds Nothing t2 te
kks <- mapM (getFunKinds cm) ks
rs <- mapM ( \ fk -> case fk of
FunKind arg res _ -> do
let ek = case arg of
ExtKind k _ _ -> k
_ -> arg
subKinds Hint cm t2 ek l [res]
_ -> error "inferKinds: no function kind"
) $ keepMinKinds cm $ concat kks
return ((rr, keepMinKinds cm $ concat rs), TypeAppl t3 t4)
_ -> mkError "unexpected type argument" t2
KindedType kt kind ps -> do
let Result ds _ = anaKindM kind cm
k <- if null ds then return kind else Result ds Nothing
((rk, ks), t) <- inferKinds b kt te
l <- subKinds Hint cm kt k ks [k]
return ((rk, l), KindedType t k ps)
ProductType ts ps -> do
l <- mapM ( \ t -> inferKinds b t te) ts
let res@(Result _ mk) = inferKinds b (convertType ty) te
case mk of
Just (kp, _) -> return (kp, ProductType (map snd l) ps)
Nothing -> res
LazyType t ps -> do
(kp, nt) <- inferKinds b t te
return (kp, LazyType nt ps)
FunType t1 a t2 ps -> do
(_, t3) <- inferKinds (fmap not b) t1 te
(_, t4) <- inferKinds b t2 te
let res@(Result _ mk) = inferKinds b (convertType ty) te
case mk of
Just (kp, _) -> return (kp, FunType t3 a t4 ps)
Nothing -> res
ExpandedType t1 t2 -> do
let Result _ mk = inferKinds b t1 te
(kp, t4) <- inferKinds b t2 te
return (kp, case mk of
Just (_, t3) -> ExpandedType t3 t4
Nothing -> t4)
_ -> error "inferKinds"
in -- trace (showPretty ty " : " ++ showPretty resu "")
resu
-- * converting type terms
-- | change lazy, product and fun types to type constructor name with arguments
getTypeAppl :: Type -> (Type, [Type])
getTypeAppl ty = let (t, args) = getTyAppl ty in
(t, reverse args) where
getTyAppl typ = case typ of
TypeName _ _ _ -> (typ, [])
TypeAppl t1 t2 -> let (t, args) = getTyAppl t1 in (t, t2 : args)
ExpandedType _ t -> getTyAppl t
LazyType t ps -> getTyAppl $ liftType t ps
KindedType t _ _ -> getTyAppl t
ProductType ts _ -> let n = length ts in
(TypeName (productId n) (prodKind n) 0, ts)
FunType t1 a t2 _ -> (TypeName (arrowId a) funKind 0, [t2, t1])
_ -> error "getTypeAppl: unresolved type"
-- | construct application left-associative
mkTypeAppl :: Type -> [Type] -> Type
mkTypeAppl = foldl ( \ c a -> TypeAppl c a)
-- | change lazy, product and fun types to uniform applications
convertType :: Type -> Type
convertType ty = let (c, args) = getTypeAppl ty in mkTypeAppl c args
-- * subtyping relation
-- | extract the raw kind from a type term
rawKindOfType :: Type -> RawKind
rawKindOfType ty = case ty of
TypeName _ k _ -> k
TypeAppl t1 _ -> case rawKindOfType t1 of
FunKind _ rk _ -> rk
_ -> error "rawKindOfType"
_ -> rawKindOfType $ convertType ty
-- | subtyping relation
lesserType :: TypeEnv -> Type -> Type -> Bool
lesserType te t1 t2 = case (t1, t2) of
(TypeAppl c1 a1, TypeAppl c2 a2) ->
let b1 = lesserType te c1 c2
b2 = lesserType te c2 c1
b = b1 && b2
in (case (rawKindOfType c1, rawKindOfType c2) of
(FunKind ak1 _ _, FunKind ak2 _ _) ->
case (ak1, ak2) of
(ExtKind _ v1 _, ExtKind _ v2 _) ->
if v1 == v2 then case v1 of
CoVar -> b1
ContraVar -> b2
else b
_ -> b
_ -> error "lesserType: no FunKind") && lesserType te a1 a2
(TypeName i1 _ _, TypeName i2 _ _) | i1 == i2 -> True
(TypeName i _ _, _) -> case Map.lookup i $ localTypeVars te of
Nothing -> case Map.lookup i $ typeMap te of
Nothing -> False
Just ti -> any ( \ t -> lesserType te t t2) $ superTypes ti
Just (TypeVarDefn _ vk _) -> case vk of
Downset t -> lesserType te t t2
_ -> False
(TypeAppl _ _, TypeName _ _ _) -> False
_ -> lesserType te (convertType t1) $ convertType t2
-- * expand alias types
-- | replace some type names with types
repl :: Map.Map Id Type -> Type -> Type
repl m = rename ( \ i k n ->
case Map.lookup i m of
Just s -> s
Nothing -> TypeName i k n)
-- | expand aliases in a type scheme
expand :: TypeMap -> TypeScheme -> TypeScheme
expand = mapTypeOfScheme . expandAlias
-- | expand aliases in a type
expandAlias :: TypeMap -> Type -> Type
expandAlias tm t =
let (ps, ts, ta, b) = expandAliases tm t in
if b && length ps == length ts then
ExpandedType t $ repl (Map.fromList (zip
(map getTypeVar ps) $ reverse ts)) ta
else ta
{- | Collect formal and actual parameters of the first argument of a
type application. -}
expandAliases :: TypeMap -> Type -> ([TypeArg], [Type], Type, Bool)
expandAliases tm t = case t of
TypeName i _ _ -> case Map.lookup i tm of
Just ti -> case typeDefn ti of
AliasTypeDefn (TypeScheme l ty _) ->
(l, [], ty, True)
Supertype _ (TypeScheme l ty _) _ ->
case ty of
TypeName _ _ _ -> wrap t
_ -> (l, [], ty, True)
_ -> wrap t
_ -> wrap t
TypeAppl t1 t2 ->
let (ps, ts, ta, b) = expandAliases tm t1
t3 = expandAlias tm t2
in if b then
(ps, t3 : ts, ta, b) -- reverse later on
else wrap $ TypeAppl t1 t3
FunType t1 a t2 ps ->
wrap $ FunType (expandAlias tm t1) a (expandAlias tm t2) ps
ProductType ts ps -> wrap $ ProductType (map (expandAlias tm) ts) ps
LazyType ty ps -> wrap $ LazyType (expandAlias tm ty) ps
ExpandedType t1 t2 -> wrap $ ExpandedType t1 $ expandAlias tm t2
KindedType ty k ps -> wrap $ KindedType (expandAlias tm ty) k ps
_ -> wrap t
where wrap ty = ([], [], ty, False)
-- | find unexpanded alias identifier
hasAlias :: TypeMap -> Type -> [Diagnosis]
hasAlias tm t =
map ( \ i -> mkDiag Error ("unexpanded alias '" ++ showId i "' in") t)
$ filter ( \ i -> case Map.lookup i tm of
Just ti -> case typeDefn ti of
AliasTypeDefn _ -> True
_ -> False
_ -> False) $ Set.toList $ idsOf (const True) t
-- * resolve and analyse types
-- | resolve type and infer minimal kinds
anaTypeM :: (Maybe Kind, Type) -> TypeEnv -> Result ((RawKind, [Kind]), Type)
anaTypeM (mk, parsedType) te =
do resolvedType <- mkTypeConstrAppl parsedType
let tm = typeMap te
expandedType = expandAlias tm resolvedType
cm = classMap te
((rk, ks), checkedType) <- inferKinds (Just True) expandedType te
l <- case mk of
Nothing -> subKinds Error cm parsedType
(if null ks then rk else head ks)
ks ks
Just k -> subKinds Error cm parsedType k ks $
filter ( \ j -> lesserKind cm j k) ks
Result (hasAlias tm checkedType) $ Just ()
return ((rk, l), checkedType)
-- | resolve the type and check if it is of the universe class
anaStarTypeM :: Type -> TypeEnv -> Result ((RawKind, [Kind]), Type)
anaStarTypeM t = anaTypeM (Just star, t)
-- * misc functions on types
-- | check if an id occurs in a type
cyclicType :: Id -> Type -> Bool
cyclicType i ty = Set.member i $ idsOf (==0) ty
-- | check for unbound (or too many) type variables
unboundTypevars :: Bool -> [TypeArg] -> Type -> [Diagnosis]
unboundTypevars b args ty =
let fvs = map (fst . snd) (leaves (> 0) ty)
argIds = map getTypeVar args
restVars1 = fvs List.\\ argIds
restVars2 = argIds List.\\ fvs
in (if null restVars1 then []
else [mkDiag Error ("unbound type variable(s)\n "
++ showSepList ("," ++) showId
restVars1 " in") ty])
++ if b || null restVars2 then [] else
[mkDiag Warning ("ignoring unused variable(s)\n "
++ showSepList ("," ++) showId
restVars2 " in") ty]
generalizable :: TypeScheme -> [Diagnosis]
generalizable (TypeScheme args ty _) =
(if null args then [] else unboundTypevars False args ty)
++ checkUniqueTypevars args
-- | check uniqueness of type variables
checkUniqueTypevars :: [TypeArg] -> [Diagnosis]
checkUniqueTypevars = checkUniqueness . map getTypeVar