SymbolMapAnalysis.hs revision eadcb2e71152212c0bda094b6754c1614114ff66
{- |
Module : $Header$
Copyright : (c) Till Mossakowski, Christian Maeder and Uni Bremen 2002-2004
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : provisional
Portability : portable
symbol map analysis for the HasCASL logic
-}
module HasCASL.SymbolMapAnalysis
( inducedFromMorphism
, inducedFromToMorphism
, cogeneratedSign
, generatedSign
) where
import HasCASL.As
import HasCASL.Le
import HasCASL.Builtin
import HasCASL.AsToLe
import HasCASL.Symbol
import HasCASL.RawSym
import HasCASL.Morphism
import HasCASL.MapTerm
import HasCASL.Unify
import HasCASL.VarDecl
import Common.Id
import Common.Result
import Common.Lib.State
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
import Common.PrettyPrint
import Common.Lib.Pretty
import Data.Maybe
inducedFromMorphism :: RawSymbolMap -> Env -> Result Morphism
inducedFromMorphism rmap sigma = do
-- first check: do all source raw symbols match with source signature?
let syms = symOf sigma
srcTypeMap = typeMap sigma
incorrectRsyms = Map.foldWithKey
(\rsy _ -> if Set.any (matchesND rsy) syms
then id
else Set.insert rsy)
Set.empty
rmap
matchesND rsy sy =
sy `matchSymb` rsy &&
case rsy of
ASymbol _ -> True
-- unqualified raw symbols need some matching symbol
-- that is not directly mapped
_ -> Map.lookup (ASymbol sy) rmap == Nothing
-- ... if not, generate an error
if Set.isEmpty incorrectRsyms then return () else
pplain_error ()
(text "the following symbols:"
<+> printText incorrectRsyms
$$ text "are already mapped directly or do not match with signature"
$$ printText sigma) nullPos
-- compute the sort map (as a Map)
myTypeIdMap <- foldr
(\ (s, ti) m ->
do s' <- typeFun sigma rmap s (typeKind ti)
m1 <- m
return $ Map.insert s s' m1)
(return Map.empty) $ Map.toList srcTypeMap
-- compute the op map (as a Map)
let tarTypeMap = addUnit $ Map.foldWithKey ( \ i k m ->
Map.insert (Map.findWithDefault i i myTypeIdMap)
(mapTypeInfo myTypeIdMap k) m)
Map.empty srcTypeMap
op_Map <- Map.foldWithKey (opFun rmap sigma myTypeIdMap)
(return Map.empty) (assumps sigma)
-- compute target signature
let sigma' = Map.foldWithKey (mapOps myTypeIdMap op_Map) sigma
{ typeMap = tarTypeMap, assumps = Map.empty }
$ assumps sigma
-- return assembled morphism
Result (envDiags sigma') $ Just ()
return $ (mkMorphism sigma (diffEnv sigma' preEnv))
{ typeIdMap = myTypeIdMap
, funMap = op_Map }
mapTypeInfo :: IdMap -> TypeInfo -> TypeInfo
mapTypeInfo im ti =
ti { superTypes = map (mapType im) $ superTypes ti
, typeDefn = mapTypeDefn im $ typeDefn ti }
mapTypeDefn :: IdMap -> TypeDefn -> TypeDefn
mapTypeDefn im td =
case td of
DatatypeDefn (DataEntry tm i k args alts) ->
DatatypeDefn (DataEntry (compIdMap tm im) i k args alts)
AliasTypeDefn sc -> AliasTypeDefn $ mapTypeScheme im sc
Supertype vs sc t ->
Supertype vs (mapTypeScheme im sc)
$ mapTerm (id, mapType im) t
_ -> td
-- | compute type mapping
typeFun :: Env -> RawSymbolMap -> Id -> Kind -> Result Id
typeFun e rmap s k = do
let rsys = Set.unions $ map (Set.maybeToSet . (\x -> Map.lookup x rmap))
[ASymbol $ idToTypeSymbol e s k, AnID s, AKindedId SK_type s]
-- rsys contains the raw symbols to which s is mapped to
case Set.size rsys of
0 -> return s -- use default = identity mapping
1 -> return $ rawSymName $ Set.findMin rsys -- take the unique rsy
_ -> pplain_error s -- ambiguity! generate an error
(text "type: " <+> printText s
<+> text "mapped ambiguously:" <+> printText rsys)
nullPos
-- | compute mapping of functions
opFun :: RawSymbolMap -> Env -> IdMap -> Id -> OpInfos
-> Result FunMap -> Result FunMap
opFun rmap e type_Map i ots m =
-- first consider all directly mapped profiles
let (ots1,m1) = foldr (directOpMap rmap e type_Map i)
(Set.empty, m) $ opInfos ots
-- now try the remaining ones with (un)kinded raw symbol
in case (Map.lookup (AKindedId SK_op i) rmap,Map.lookup (AnID i) rmap) of
(Just rsy1, Just rsy2) ->
do m' <- m
pplain_error m'
(text "Operation" <+> printText i
<+> text "is mapped twice:"
<+> printText rsy1 <+> text "," <+> printText rsy2
)
nullPos
(Just rsy, Nothing) ->
Set.fold (insertmapOpSym e type_Map i rsy) m1 ots1
(Nothing, Just rsy) ->
Set.fold (insertmapOpSym e type_Map i rsy) m1 ots1
-- Anything not mapped explicitly is left unchanged
(Nothing,Nothing) -> Set.fold (unchangedOpSym type_Map i) m1 ots1
-- try to map an operation symbol directly
-- collect all opTypes that cannot be mapped directly
directOpMap :: RawSymbolMap -> Env -> IdMap -> Id -> OpInfo
-> (Set.Set TypeScheme, Result FunMap)
-> (Set.Set TypeScheme, Result FunMap)
directOpMap rmap e type_Map i oi (ots,m) = let ot = opType oi in
case Map.lookup (ASymbol $ idToOpSymbol e i ot) rmap of
Just rsy ->
(ots, insertmapOpSym e type_Map i rsy ot m)
Nothing -> (Set.insert ot ots, m)
-- map op symbol (id,ot) to raw symbol rsy
mapOpSym :: Env -> IdMap -> Id -> TypeScheme -> RawSymbol
-> Result (Id, TypeScheme)
mapOpSym e type_Map i ot rsy =
let sc = mapTypeScheme type_Map ot
err d = pplain_error (i, sc)
(text "Operation symbol "
<+> printText (idToOpSymbol e i sc)
$$ text "is mapped to" <+> d) nullPos in
case rsy of
AnID id' -> return (id', sc)
AKindedId k id' -> case k of
SK_op -> return (id', sc)
_ -> err (text "wrongly kinded raw symbol" $$ printText rsy)
ASymbol sy -> case symType sy of
OpAsItemType ot2 -> if ot2 == expand (typeMap $ symEnv sy) sc
then return (symName sy, ot2)
else err (text "wrong type" $$ printText ot2)
_ -> err (text "wrongly kinded symbol" $$ printText sy)
_ -> error "mapOpSym"
-- insert mapping of op symbol (id, ot) to raw symbol rsy into m
insertmapOpSym :: Env -> IdMap -> Id -> RawSymbol -> TypeScheme
-> Result FunMap -> Result FunMap
insertmapOpSym e type_Map i rsy ot m = do
m1 <- m
(id',kind') <- mapOpSym e type_Map i ot rsy
return (Map.insert (i, ot) (id',kind') m1)
-- insert mapping of op symbol (id,ot) to itself into m
unchangedOpSym :: IdMap -> Id -> TypeScheme -> Result FunMap
-> Result FunMap
unchangedOpSym im i ot m = do
m1 <- m
return (Map.insert (i, ot) (i, mapTypeScheme im ot) m1)
-- map the ops in the source signature
mapOps :: IdMap -> FunMap -> Id -> OpInfos -> Env -> Env
mapOps type_Map op_Map i ots e =
foldr ( \ ot e' ->
let sc = opType ot
(id', sc') = Map.findWithDefault (i, mapTypeScheme type_Map sc)
(i, sc) op_Map
in execState (addOpId id' sc' (opAttrs ot)
(mapOpDefn type_Map $ opDefn ot)) e')
-- more things in opAttrs and opDefns need renaming
e $ opInfos ots
mapOpDefn :: IdMap -> OpDefn -> OpDefn
mapOpDefn im d = case d of
ConstructData i -> ConstructData $ Map.findWithDefault i i im
SelectData cs i -> SelectData (map (mapConstrInfo im) cs)
$ Map.findWithDefault i i im
_ -> d
mapConstrInfo :: IdMap -> ConstrInfo -> ConstrInfo
mapConstrInfo im ci = ci { constrType = mapTypeScheme im $ constrType ci}
-- the main function
inducedFromToMorphism :: RawSymbolMap -> Env -> Env -> Result Morphism
inducedFromToMorphism rmap sigma1 sigma2 = do
--debug 3 ("rmap",rmap)
-- 1. use rmap to get a renaming...
mor1 <- inducedFromMorphism rmap sigma1
-- 1.1 ... is the renamed source signature contained in the target signature?
--debug 3 ("mtarget mor1",mtarget mor1)
--debug 3 ("sigma2",sigma2)
if isSubEnv (mtarget mor1) sigma2
-- yes => we are done
then return $ mor1 { mtarget = sigma2
, funMap = Map.map ( \ (i, sc) ->
(i, expand (typeMap sigma2) sc)) $ funMap mor1 }
-- no => OK, we've to take the hard way
else let s1 = symOf sigma1
s2 = symOf sigma2
Symbol n1 t1 _ = Set.findMin s1
Symbol n2 t2 _ = Set.findMin s2
in if Set.size s1 == 1 && Set.size s2 == 1
&& symbTypeToKind t1 == SK_type
&& symbTypeToKind t2 == SK_type then
return mor1 { typeIdMap = Map.single n1 n2 }
else pfatal_error (text "No symbol mapping found for "
$$ printText rmap
$$ text "sigma1" $$ printText sigma1
$$ text "inducedFromMorphism sigma1" $$ printText (mtarget mor1)
$$ text "to sigma2" $$ printText sigma2
$$ text "difference" $$ printText (diffEnv (mtarget mor1) sigma2))
nullPos
-- inducedFromToMorphism2 rmap sigma1 sigma2
-- | reveal the symbols in the set
generatedSign :: SymbolSet -> Env -> Result Morphism
generatedSign syms sigma =
let signSyms = symOf sigma
closedSyms = closeSymbSet syms
subSigma = plainHide (signSyms Set.\\ closedSyms) sigma
in checkSymbols closedSyms signSyms $
return $ embedMorphism subSigma sigma
-- | hide the symbols in the set
cogeneratedSign :: SymbolSet -> Env -> Result Morphism
cogeneratedSign syms sigma =
let signSyms = symOf sigma
subSigma = Set.fold hideRelSymbol sigma syms
in checkSymbols syms signSyms $
return $ embedMorphism subSigma sigma