SymbolMapAnalysis.hs revision ae4709a312f8143012cef926e0f2063feb617ba7
{- |
Module : $Header$
Description : analysis of symbol mappings
Copyright : (c) Till Mossakowski, Christian Maeder and Uni Bremen 2002-2005
License : similar to LGPL, see HetCATS/LICENSE.txt or LIZENZ.txt
Maintainer : Christian.Maeder@dfki.de
Stability : provisional
Portability : portable
symbol map analysis for the HasCASL logic
-}
module HasCASL.SymbolMapAnalysis
( inducedFromMorphism
, inducedFromToMorphism
, cogeneratedSign
, generatedSign
) where
import HasCASL.As
import HasCASL.Le
import HasCASL.PrintLe
import HasCASL.Builtin
import HasCASL.AsToLe
import HasCASL.Symbol
import HasCASL.RawSym
import HasCASL.Merge
import HasCASL.Morphism
import HasCASL.VarDecl
import HasCASL.TypeAna
import Common.DocUtils
import Common.Id
import Common.Result
import Common.Lib.State
import qualified Data.Map as Map
import qualified Data.Set as Set
inducedFromMorphism :: RawSymbolMap -> Env -> Result Morphism
inducedFromMorphism rmap1 sigma = do
-- first check: do all source raw symbols match with source signature?
rmap <- anaRawMap sigma sigma rmap1
let syms = symOf sigma
srcTypeMap = typeMap sigma
wrongRsyms = Set.filter
(\ rsy -> Set.null $ Set.filter (matchesND rsy) syms)
$ Map.keysSet rmap
matchesND rsy sy =
sy `matchSymb` rsy &&
case rsy of
ASymbol _ -> True
-- unqualified raw symbols need some matching symbol
-- that is not directly mapped
_ -> Map.lookup (ASymbol sy) rmap == Nothing
-- ... if not, generate an error
if Set.null wrongRsyms then return () else
Result [mkDiag Error "unknown (or already directly mapped) symbol(s)"
wrongRsyms] Nothing
-- compute the sort map (as a Map)
myTypeIdMap <- foldr
(\ (s, ti) m ->
do s' <- typeFun sigma rmap s (typeKind ti)
m1 <- m
return $ if s == s' then m1 else Map.insert s s' m1)
(return Map.empty) $ Map.toList srcTypeMap
-- compute the op map (as a Map)
let tarTypeMap = addUnit (classMap sigma) $ Map.foldWithKey
( \ i k m -> Map.insert
(Map.findWithDefault i i myTypeIdMap)
(mapTypeInfo myTypeIdMap k) m)
Map.empty srcTypeMap
tarAliases = filterAliases tarTypeMap
op_Map <- Map.foldWithKey (opFun rmap sigma tarAliases myTypeIdMap)
(return Map.empty) (assumps sigma)
-- compute target signature
let tarTypeMap2 = Map.map (mapRestTypeInfo tarAliases myTypeIdMap op_Map)
tarTypeMap
sigma' = Map.foldWithKey (mapOps tarAliases myTypeIdMap op_Map) sigma
{ typeMap = tarTypeMap2, assumps = Map.empty }
$ assumps sigma
-- return assembled morphism
Result (envDiags sigma') $ Just ()
return $ (mkMorphism sigma (diffEnv sigma' preEnv))
{ typeIdMap = myTypeIdMap
, funMap = op_Map }
mapRestTypeInfo :: TypeMap -> IdMap -> FunMap -> TypeInfo -> TypeInfo
mapRestTypeInfo tm im fm ti = ti
{ typeDefn = mapRestTypeDefn tm im fm $ typeDefn ti }
mapRestTypeDefn :: TypeMap -> IdMap -> FunMap -> TypeDefn -> TypeDefn
mapRestTypeDefn tm im fm td = case td of
DatatypeDefn de -> DatatypeDefn $ mapDataEntry tm im fm de
_ -> td
mapTypeInfo :: IdMap -> TypeInfo -> TypeInfo
mapTypeInfo im ti =
ti { superTypes = Set.map ( \ i -> Map.findWithDefault i i im)
$ superTypes ti
, typeDefn = mapTypeDefn im $ typeDefn ti }
mapTypeDefn :: IdMap -> TypeDefn -> TypeDefn
mapTypeDefn im td = case td of
DatatypeDefn (DataEntry tm i k args rk alts) ->
DatatypeDefn (DataEntry (compIdMap tm im) i k args rk alts)
AliasTypeDefn sc -> AliasTypeDefn $ mapType im sc
_ -> td
-- | compute type mapping
typeFun :: Env -> RawSymbolMap -> Id -> RawKind -> Result Id
typeFun e rmap s k = do
let rsys = Set.unions $ map ( \ x -> case Map.lookup x rmap of
Nothing -> Set.empty
Just r -> Set.singleton r)
[ASymbol $ idToTypeSymbol e s k, AnID s, AKindedId SK_type s]
-- rsys contains the raw symbols to which s is mapped to
if Set.null rsys then return s -- use default = identity mapping
else if Set.null $ Set.deleteMin rsys then
return $ rawSymName $ Set.findMin rsys
else Result [mkDiag Error ("type: " ++ showDoc s
" mapped ambiguously") rsys] Nothing
-- | compute mapping of functions
opFun :: RawSymbolMap -> Env -> TypeMap -> IdMap -> Id -> Set.Set OpInfo
-> Result FunMap -> Result FunMap
opFun rmap e tm im i ots m =
-- first consider all directly mapped profiles
let (ots1,m1) = Set.fold (directOpMap rmap e tm im i)
(Set.empty, m) ots
-- now try the remaining ones with (un)kinded raw symbol
in case (Map.lookup (AKindedId SK_op i) rmap,Map.lookup (AnID i) rmap) of
(Just rsy1, Just rsy2) ->
Result [mkDiag Error ("Operation " ++ showId i " is mapped twice")
(rsy1, rsy2)] Nothing
(Just rsy, Nothing) ->
Set.fold (insertmapOpSym e tm im i rsy) m1 ots1
(Nothing, Just rsy) ->
Set.fold (insertmapOpSym e tm im i rsy) m1 ots1
-- Anything not mapped explicitly is left unchanged
(Nothing,Nothing) -> m1
-- try to map an operation symbol directly
-- collect all opTypes that cannot be mapped directly
directOpMap :: RawSymbolMap -> Env -> TypeMap -> IdMap -> Id -> OpInfo
-> (Set.Set TypeScheme, Result FunMap)
-> (Set.Set TypeScheme, Result FunMap)
directOpMap rmap e tm im i oi (ots,m) = let ot = opType oi in
case Map.lookup (ASymbol $ idToOpSymbol e i ot) rmap of
Just rsy ->
(ots, insertmapOpSym e tm im i rsy ot m)
Nothing -> (Set.insert ot ots, m)
-- map op symbol (id,ot) to raw symbol rsy
mapOpSym :: Env -> TypeMap -> IdMap -> Id -> TypeScheme -> RawSymbol
-> Result (Id, TypeScheme)
mapOpSym e tm im i ot rsy =
let sc = mapTypeScheme tm im ot
err d = Result [mkDiag Error ("Operation symbol " ++
showDoc (idToOpSymbol e i sc)
"\nis mapped to " ++ d) rsy] Nothing in
case rsy of
AnID id' -> return (id', sc)
AKindedId k id' -> case k of
SK_op -> return (id', sc)
_ -> err "wrongly kinded raw symbol"
ASymbol sy -> case symType sy of
OpAsItemType ot2 -> if ot2 == expand (typeMap $ symEnv sy) sc
then return (symName sy, ot2)
else err "wrongly typed symbol"
_ -> err "wrongly kinded symbol"
_ -> error "mapOpSym"
-- insert mapping of op symbol (id, ot) to raw symbol rsy into m
insertmapOpSym :: Env -> TypeMap -> IdMap -> Id -> RawSymbol -> TypeScheme
-> Result FunMap -> Result FunMap
insertmapOpSym e tm im i rsy ot m = do
m1 <- m
q <- mapOpSym e tm im i ot rsy
let p = (i, mapTypeScheme tm im ot)
return $ if p == q then m1 else Map.insert p q m1
-- insert mapping of op symbol (i, ot) into m
-- map the ops in the source signature
mapOps :: TypeMap -> IdMap -> FunMap -> Id -> Set.Set OpInfo -> Env -> Env
mapOps tm im fm i ots e =
Set.fold ( \ ot e' ->
let sc = mapTypeScheme tm im $ opType ot
(id', sc') = Map.findWithDefault (i, sc)
(i, sc) fm
in execState (addOpId id' sc' (Set.map (mapOpAttr tm im fm)
$ opAttrs ot)
(mapOpDefn tm im fm $ opDefn ot)) e')
e ots
mapOpAttr :: TypeMap -> IdMap -> FunMap -> OpAttr -> OpAttr
mapOpAttr tm im fm oa = case oa of
UnitOpAttr t ps -> UnitOpAttr (mapSen tm im fm t) ps
_ -> oa
mapOpDefn :: TypeMap -> IdMap -> FunMap -> OpDefn -> OpDefn
mapOpDefn tm im fm d = case d of
ConstructData i -> ConstructData $ Map.findWithDefault i i im
SelectData cs i -> SelectData (Set.map (mapConstrInfo tm im fm) cs)
$ Map.findWithDefault i i im
Definition b t -> Definition b $ mapSen tm im fm t
_ -> d
mapConstrInfo :: TypeMap -> IdMap -> FunMap -> ConstrInfo -> ConstrInfo
mapConstrInfo tm im fm (ConstrInfo i sc) =
let (j, nSc) = mapFunSym tm im fm (i, sc) in ConstrInfo j nSc
-- | basically test if the renamed source signature is in the target signature
inducedFromToMorphism :: RawSymbolMap -> Env -> Env -> Result Morphism
inducedFromToMorphism rmap1 sigma1 sigma2 = do
mor1 <- inducedFromMorphism rmap1 sigma1
if isSubEnv (mtarget mor1) sigma2
-- yes => we are done
then return mor1 { mtarget = sigma2 }
-- no => OK, we've to take a harder way
else do
let ft = Set.filter ( \ (Symbol _ t _) -> case t of
TypeAsItemType _ -> True
_ -> False)
s1 = ft $ symOf sigma1
s2 = ft $ symOf sigma2
err = Result [Diag Error ("No symbol mapping found for:\n"
++ shows (printMap1 rmap1) "\nOrignal Signature 1:\n"
++ showDoc sigma1 "\nInduced "
++ showEnvDiff (mtarget mor1) sigma2) nullRange] Nothing
if Set.size s1 == 1 && Set.size s2 == 1 then do
let Symbol n1 _ _ = Set.findMin s1
Symbol n2 _ _ = Set.findMin s2
mor2 <- inducedFromMorphism (Map.insert (AKindedId SK_type n1)
(AKindedId SK_type n2) rmap1) sigma1
if isSubEnv (mtarget mor2) sigma2
then return mor2 { mtarget = sigma2 }
else err
else err
-- | reveal the symbols in the set
generatedSign :: SymbolSet -> Env -> Result Morphism
generatedSign syms sigma =
let signSyms = symOf sigma
closedSyms = closeSymbSet syms
subSigma = plainHide (signSyms Set.\\ closedSyms) sigma
in checkSymbols closedSyms signSyms $
return $ embedMorphism subSigma sigma
-- | hide the symbols in the set
cogeneratedSign :: SymbolSet -> Env -> Result Morphism
cogeneratedSign syms sigma =
let signSyms = symOf sigma
subSigma = Set.fold hideRelSymbol sigma syms
in checkSymbols syms signSyms $
return $ embedMorphism subSigma sigma