Cross Reference: /hets/HasCASL/Symbol.hs
Symbol.hs revision 97ee7048e63953c5617342ce38c30cbcb35cc0be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : experimental
Portability : portable
HasCASL analysed symbols of a signature
-}
module HasCASL.Symbol where
import HasCASL.Le
import HasCASL.HToken
import HasCASL.As
import HasCASL.Unify
import HasCASL.Merge
import Common.Id
import Common.Keywords
import Common.Result
import Common.PrettyPrint
import Common.Lib.Pretty
import Common.Lib.State
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
-- new type to defined a different Eq and Ord instance
data TySc = TySc TypeScheme deriving Show
instance Eq TySc where
TySc sc1 == TySc sc2 =
let Result _ ms = mergeScheme Map.empty 0 sc1 sc2
in maybe False (const True) ms
instance Ord TySc where
-- this does not match with Eq TypeScheme!
TySc sc1 <= TySc sc2 =
TySc sc1 == TySc sc2 ||
let (t1, c) = runState (freshInst sc1) 1
t2 = evalState (freshInst sc2) c
v1 = varsOf t1
v2 = varsOf t2
in case compare (Set.size v1) $ Set.size v2 of
LT -> True
EQ -> t1 <= subst (Map.fromAscList $
zipWith (\ v (TypeArg i k _ _) ->
(v, TypeName i k 1))
(Set.toList v1) $ Set.toList v2) t2
GT -> False
data SymbolType = OpAsItemType TypeScheme
| TypeAsItemType Kind
| ClassAsItemType Kind
deriving (Show, Eq, Ord)
data SyTy = OpAsITy TySc
| TypeAsITy Kind
| ClassAsITy Kind
deriving (Show, Eq, Ord)
-- just for the Eq and Ord instances for Symbol
toSyTy :: SymbolType -> SyTy
toSyTy st = case st of
OpAsItemType sc -> OpAsITy $ TySc sc
TypeAsItemType k -> TypeAsITy k
ClassAsItemType k -> ClassAsITy k
instance PrettyPrint SymbolType where
printText0 ga t = case t of
OpAsItemType sc -> printText0 ga sc
TypeAsItemType k -> printText0 ga k
ClassAsItemType k -> printText0 ga k
data Symbol = Symbol {symName :: Id, symType :: SymbolType, symEnv :: Env}
deriving Show
instance Eq Symbol where
s1 == s2 = (symName s1, toSyTy $ symType s1) ==
(symName s2, toSyTy $ symType s2)
instance Ord Symbol where
s1 <= s2 = (symName s1, toSyTy $ symType s1) <=
(symName s2, toSyTy $ symType s2)
instance PrettyPrint Symbol where
printText0 ga s = text (case symType s of
OpAsItemType _ -> opS
TypeAsItemType _ -> typeS
ClassAsItemType _ -> classS) <+>
printText0 ga (symName s) <+> text colonS <+>
printText0 ga (symType s)
type SymbolMap = Map.Map Symbol Symbol
type SymbolSet = Set.Set Symbol
idToTypeSymbol :: Env -> Id -> Kind -> Symbol
idToTypeSymbol e idt k = Symbol idt (TypeAsItemType k) e
idToClassSymbol :: Env -> Id -> Kind -> Symbol
idToClassSymbol e idt k = Symbol idt (ClassAsItemType k) e
idToOpSymbol :: Env -> Id -> TypeScheme -> Symbol
idToOpSymbol e idt typ = Symbol idt (OpAsItemType typ) e
checkSymbols :: SymbolSet -> SymbolSet -> Result a -> Result a
checkSymbols s1 s2 r =
let s = s1 Set.\\ s2 in
if Set.isEmpty s then r else
pfatal_error
(ptext "unknown symbols: "
<+> printText s) $ posOfId $ symName $ Set.findMin s
hideSymbol :: Symbol -> Env -> Env
hideSymbol sym sig =
let i = symName sym
tm = typeMap sig
as = assumps sig in
case symType sym of
ClassAsItemType _ -> sig
TypeAsItemType _ -> sig { typeMap =
Map.delete i tm }
OpAsItemType ot ->
let OpInfos os = Map.findWithDefault (OpInfos []) i as
rs = filter (not . isUnifiable tm 0 ot . opType) os
in sig { assumps = if null rs then Map.delete i as
else Map.insert i (OpInfos rs) as }
plainHide :: SymbolSet -> Env -> Env
plainHide syms sigma =
let (opSyms, otherSyms) = Set.partition (\ sy -> case symType sy of
OpAsItemType _ -> True
_ -> False) syms
in Set.fold hideSymbol (Set.fold hideSymbol sigma otherSyms) opSyms
-- | type ids within a type
subSyms :: Env -> Type -> SymbolSet
subSyms e t = case t of
TypeName i k n ->
if n == 0 then Set.single $ idToTypeSymbol e i k
else Set.empty
TypeAppl t1 t2 -> Set.union (subSyms e t1) (subSyms e t2)
KindedType tk _ _ -> subSyms e tk
LazyType tl _ -> subSyms e tl
ProductType l _ -> Set.unions $ map (subSyms e) l
FunType t1 _ t2 _ -> Set.union (subSyms e t1) (subSyms e t2)
_ -> error ("subSyms: " ++ show t)
subSymsOf :: Symbol -> SymbolSet
subSymsOf sy = case symType sy of
OpAsItemType (TypeScheme _ (_ :=> ty) _) -> subSyms (symEnv sy) ty
_ -> Set.empty
closeSymbSet :: SymbolSet -> SymbolSet
closeSymbSet s = Set.unions (s : map subSymsOf (Set.toList s))
symOf :: Env -> SymbolSet
symOf sigma =
let classes = Map.foldWithKey ( \ i ks s ->
Set.insert (Symbol i (ClassAsItemType $
Intersection (classKinds ks) []) sigma) s)
Set.empty $ classMap sigma
types = Map.foldWithKey ( \ i ti s ->
Set.insert (Symbol i (TypeAsItemType $
typeKind ti) sigma) s)
classes $ typeMap sigma
ops = Map.foldWithKey ( \ i ts s0 ->
foldr ( \ t s1 ->
Set.insert (Symbol i (OpAsItemType $
opType t) sigma) s1) s0 $ opInfos ts)
types $ assumps sigma
in ops