Symbol.hs revision 7d22a9e856aa466bf246922f2bac3254ff97189f
{- |
Module : $Header$
Copyright : (c) Christian Maeder and Uni Bremen 2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : experimental
Portability : portable
HasCASL analysed symbols of a signature
-}
module HasCASL.Symbol where
import HasCASL.Le
import HasCASL.PrintLe
import HasCASL.As
import HasCASL.Unify
import HasCASL.RawSym
import Common.Id
import Common.Result
import Common.PrettyPrint
import Common.Lib.Pretty
import qualified Common.Lib.Map as Map
import qualified Common.Lib.Set as Set
checkSymbols :: SymbolSet -> SymbolSet -> Result a -> Result a
checkSymbols s1 s2 r =
let s = foldr ( \ e2 d ->
Set.filter (not . matchSymb e2 . ASymbol) d)
s1 $ Set.toList s2 in
if Set.isEmpty s then r else
pfatal_error
(text "unknown symbols: "
<+> printText s) $ posOfId $ symName $ Set.findMin s
dependentSyms :: Symbol -> Env -> SymbolSet
dependentSyms sym sig =
Set.fold ( \ op se ->
if Set.member sym $ subSymsOf op then
Set.insert op se else se) Set.empty $ symOf sig
hideRelSymbol :: Symbol -> Env -> Env
hideRelSymbol sym sig =
hideSymbol sym $ Set.fold hideSymbol sig $ dependentSyms sym sig
hideSymbol :: Symbol -> Env -> Env
hideSymbol sym sig =
let i = symName sym
tm = typeMap sig
as = assumps sig in
case symType sym of
ClassAsItemType _ -> sig
TypeAsItemType _ -> sig { typeMap =
Map.delete i tm }
OpAsItemType ot ->
let OpInfos os = Map.findWithDefault (OpInfos []) i as
rs = filter (not . isUnifiable tm 1 ot . opType) os
in sig { assumps = if null rs then Map.delete i as
else Map.insert i (OpInfos rs) as }
plainHide :: SymbolSet -> Env -> Env
plainHide syms sigma =
let (opSyms, otherSyms) = Set.partition (\ sy -> case symType sy of
OpAsItemType _ -> True
_ -> False) syms
-- | type ids within a type
subSyms :: Env -> Type -> SymbolSet
subSyms e t = case t of
TypeName i k n ->
if n == 0 then if i == unitTypeId then Set.empty
else Set.single $ idToTypeSymbol e i k
else Set.empty
TypeAppl t1 t2 -> Set.union (subSyms e t1) (subSyms e t2)
ExpandedType _ t1 -> subSyms e t1
KindedType tk _ _ -> subSyms e tk
LazyType tl _ -> subSyms e tl
ProductType l _ -> Set.unions $ map (subSyms e) l
FunType t1 _ t2 _ -> Set.union (subSyms e t1) (subSyms e t2)
_ -> error ("subSyms: " ++ show t)
subSymsOf :: Symbol -> SymbolSet
subSymsOf sy = case symType sy of
OpAsItemType (TypeScheme _ ty _) -> subSyms (symEnv sy) ty
_ -> Set.empty
closeSymbSet :: SymbolSet -> SymbolSet
closeSymbSet s = Set.unions (s : map subSymsOf (Set.toList s))
symOf :: Env -> SymbolSet
symOf sigma =
let classes = Map.foldWithKey ( \ i ks s ->
Set.insert (idToClassSymbol sigma i $
Intersection (classKinds ks) []) s)
Set.empty $ classMap sigma
types = Map.foldWithKey ( \ i ti s ->
Set.insert (idToTypeSymbol sigma i $
typeKind ti) s)
classes $ typeMap sigma
ops = Map.foldWithKey ( \ i ts s0 ->
foldr ( \ t s1 ->
Set.insert (idToOpSymbol sigma i $
opType t) s1) s0 $ opInfos ts)
types $ assumps sigma
in ops