Symbol.hs revision 599766906b25938d5b184febd19b8e0bbe623e7b
{- |
Module : $Header$
Description : symbol analysis
Copyright : (c) Christian Maeder and Uni Bremen 2003
License : GPLv2 or higher, see LICENSE.txt
Maintainer : Christian.Maeder@dfki.de
Stability : experimental
Portability : portable
HasCASL analysed symbols of a signature
-}
module HasCASL.Symbol where
import HasCASL.Le
import HasCASL.PrintLe ()
import HasCASL.As
import HasCASL.AsUtils
import HasCASL.Builtin
import HasCASL.RawSym
import Common.Id
import Common.Result
import qualified Data.Map as Map
import qualified Data.Set as Set
instance GetRange Symbol where
getRange = getRange . symName
checkSymbols :: SymbolSet -> SymbolSet -> Result a -> Result a
checkSymbols s1 s2 r =
let s = foldr ( \ e2 ->
Set.filter (not . matchSymb e2 . ASymbol))
s1 $ Set.toList s2 in
if Set.null s then r else
Result [mkDiag Error "unknown HasCASL symbols" s] Nothing
dependentSyms :: Symbol -> Env -> SymbolSet
dependentSyms sym =
Set.fold ( \ op se ->
if Set.member sym $ subSymsOf op then
Set.insert op se else se) Set.empty . Set.unions . symOf
hideRelSymbol :: Symbol -> Env -> Env
hideRelSymbol sym sig =
hideSymbol sym $ Set.fold hideSymbol sig $ dependentSyms sym sig
hideSymbol :: Symbol -> Env -> Env
hideSymbol sym sig =
let i = symName sym
cm = classMap sig
tm = typeMap sig
as = assumps sig in
case symType sym of
ClassAsItemType _ -> sig
{ classMap = Map.map
(\ ci -> ci { classKinds = Set.filter
(Set.notMember i . idsOfKind) $ classKinds ci })
$ Map.delete i cm
, typeMap = Map.map
(\ ti -> ti { otherTypeKinds = Set.filter
(Set.notMember i . idsOfKind) $ otherTypeKinds ti })
tm }
TypeAsItemType _ -> sig
{ typeMap = Map.map
(\ ti -> ti { superTypes = Set.delete i $ superTypes ti })
$ Map.delete i tm }
OpAsItemType ot ->
let os = Map.findWithDefault Set.empty i as
rs = Set.filter ((/= ot) . opType) os
in sig { assumps = if Set.null rs then Map.delete i as
else Map.insert i rs as }
_ -> sig
idsOfKind :: Kind -> Set.Set Id
idsOfKind kd = case kd of
ClassKind i -> Set.singleton i
FunKind _ k1 k2 _ -> Set.union (idsOfKind k1) $ idsOfKind k2
plainHide :: SymbolSet -> Env -> Env
plainHide syms sigma =
let (opSyms, otherSyms) = Set.partition (\ sy -> case symType sy of
OpAsItemType _ -> True
_ -> False) syms
in Set.fold hideSymbol (Set.fold hideSymbol sigma otherSyms) opSyms
-- | type ids within a type
subSyms :: Type -> SymbolSet
subSyms t = case t of
TypeName i k n ->
if n == 0 then if i == unitTypeId || i == lazyTypeId ||
isArrow i || isProductId i then Set.empty
else Set.singleton $ idToTypeSymbol i k
else Set.empty
TypeAppl t1 t2 -> Set.union (subSyms t1) (subSyms t2)
ExpandedType _ t1 -> subSyms t1
KindedType tk _ _ -> subSyms tk
TypeAbs _ b _ -> subSyms b
_ -> error ("subSyms: " ++ show t)
subSymsOf :: Symbol -> SymbolSet
subSymsOf sy = case symType sy of
OpAsItemType (TypeScheme _ ty _) -> subSyms ty
_ -> Set.empty
closeSymbSet :: SymbolSet -> SymbolSet
closeSymbSet s = Set.unions (s : map subSymsOf (Set.toList s))
opSymOf :: Env -> SymbolSet
opSymOf sigma = Map.foldWithKey ( \ i ts s ->
if Map.member i bOps then s else
Set.fold (Set.insert . idToOpSymbol i . opType)
s ts)
Set.empty $ assumps sigma
symOf :: Env -> [SymbolSet]
symOf sigma =
let classes = Map.foldWithKey ( \ i ->
Set.insert . idToClassSymbol i . rawKind)
Set.empty $ classMap sigma
types = Map.foldWithKey ( \ i ti ->
if Map.member i bTypes then id else
Set.insert $ idToTypeSymbol i $ typeKind ti)
Set.empty $ typeMap sigma
ops = Map.foldWithKey ( \ i ts s ->
if Map.member i bOps then s else
Set.fold (Set.insert . idToOpSymbol i . opType)
s ts)
Set.empty $ assumps sigma
in [classes, types, ops]