Cross Reference: /hets/HasCASL/Sublogic.hs
Sublogic.hs revision 0f67ca7b0c738a28f6688ba6e96d44d7c14af611
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
{- |
Module : $Header$
Copyright : (c) Pascal Schmidt, Christiantian Maeder, and Uni Bremen 2002-2003
Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt
Maintainer : hets@tzi.de
Stability : experimental
Portability : portable
This module provides the sublogic functions (as required by Logic.hs) for
HasCASL. The functions allow to compute the minimal sublogics needed by a
given element, to check whether an item is part of a given sublogic, and --
not yet -- to project an element into a given sublogic.
-}
module HasCASL.Sublogic ( -- * datatypes
HasCASL_Sublogics(..),
HasCASL_Formulas(..),
-- * functions for LatticeWithTop instance
top,
sublogics_max,
sublogics_min,
-- * functions for Logic instance
-- * sublogic to string converstion
sublogics_name,
-- * list of all sublogics
sublogics_all,
-- * checks if element is in given sublogic
in_basicSpec,
in_sentence,
in_symbItems,
in_symbMapItems,
in_env,
in_morphism,
in_symbol,
-- * computes the sublogic of a given element
sl_basicSpec,
sl_sentence,
sl_symbItems,
sl_symbMapItems,
sl_env,
sl_morphism,
sl_symbol,
) where
import Data.Maybe
import qualified Common.Lib.Map as Map
import Common.AS_Annotation
import HasCASL.As
import HasCASL.Le
import HasCASL.Morphism
import HasCASL.Builtin
------------------------------------------------------------------------------
-- | Datatypes for HasCASL sublogics
------------------------------------------------------------------------------
data HasCASL_Formulas = Atomic -- atomic logic
| Horn -- positive conditional logic
| GHorn -- generalized positive conditional logic
| FOL -- first-order logic
| HOL -- higher-order logic
deriving (Show,Ord,Eq)
data HasCASL_Sublogics = HasCASL_SL
{ has_sub :: Bool, -- subsorting
has_part :: Bool, -- partiality
has_eq :: Bool, -- equality
has_pred :: Bool, -- predicates
has_ho :: Bool, -- higher order
has_type_classes :: Bool,
has_polymorphism :: Bool,
has_type_constructors :: Bool,
which_logic::HasCASL_Formulas
} deriving (Show,Ord,Eq)
-----------------------------------------------------------------------------
-- Special sublogics elements
-----------------------------------------------------------------------------
-- top element
--
top :: HasCASL_Sublogics
top = (HasCASL_SL True True True True True True True True HOL)
-- bottom element
--
bottom :: HasCASL_Sublogics
bottom = (HasCASL_SL False False False False False False False False Atomic)
-- the following are used to add a needed feature to a given
-- sublogic via sublogics_max, i.e. (sublogics_max given needs_part)
-- will force partiality in addition to what features given already
-- has included
-- minimal sublogic with subsorting
--
need_sub :: HasCASL_Sublogics
need_sub = bottom { has_sub = True }
-- minimal sublogic with partiality
--
need_part :: HasCASL_Sublogics
need_part = bottom { has_part = True }
-- minimal sublogic with equality
--
need_eq :: HasCASL_Sublogics
need_eq = bottom { has_eq = True }
-- minimal sublogic with predicates
--
need_pred :: HasCASL_Sublogics
need_pred = bottom { has_pred = True }
-- minimal sublogic with higher order
--
need_ho :: HasCASL_Sublogics
need_ho = bottom { has_ho = True }
-- minimal sublogic with type classes
--
need_type_classes :: HasCASL_Sublogics
need_type_classes = bottom { has_type_classes = True }
-- minimal sublogic with polymorhism
--
need_polymorphism :: HasCASL_Sublogics
need_polymorphism = bottom { has_polymorphism = True }
-- minimal sublogic with type constructors
--
need_type_constructors :: HasCASL_Sublogics
need_type_constructors = bottom { has_type_constructors = True }
need_horn :: HasCASL_Sublogics
need_horn = bottom { which_logic = Horn }
need_ghorn :: HasCASL_Sublogics
need_ghorn = bottom { which_logic = GHorn }
need_fol :: HasCASL_Sublogics
need_fol = bottom { which_logic = FOL }
need_hol :: HasCASL_Sublogics
need_hol = bottom { which_logic = HOL }
-----------------------------------------------------------------------------
-- Functions to generate a list of all sublogics for HasCASL
-----------------------------------------------------------------------------
sublogics_all :: [HasCASL_Sublogics]
sublogics_all = [HasCASL_SL {has_sub = sub,
has_part = part,
has_eq = eq,
has_pred = pre,
has_ho = ho,
has_type_classes = tyCl,
has_polymorphism = poly,
has_type_constructors = tyCon,
which_logic = logic}
| sub <- [False,True],
part <- [False,True],
eq <- [False,True],
pre <- [False,True],
ho <- [False,True],
tyCl <- [False,True],
poly <- [False,True],
tyCon <- [False,True],
logic <- [Atomic, Horn, GHorn, FOL, HOL] ]
------------------------------------------------------------------------------
-- Conversion functions (to String)
------------------------------------------------------------------------------
-- "formulas_name :: has_pred -> has_ho -> which_logic -> String"
formulas_name :: Bool -> Bool -> HasCASL_Formulas -> String
formulas_name True True HOL = "HOL"
formulas_name True False HOL = "HOL" -- ?!
formulas_name False True HOL = "HOL"
formulas_name False False HOL = "HOL" -- ?!
formulas_name True True FOL = "HOL" -- ?!
formulas_name True False FOL = "FOL"
formulas_name False True FOL = "HO-FOAlg" -- ?!
formulas_name False False FOL = "FOAlg"
formulas_name True True GHorn = "HO-GHorn"
formulas_name True False GHorn = "GHorn"
formulas_name False True GHorn = "HO-GCond"
formulas_name False False GHorn = "GCond"
formulas_name True True Horn = "HO-Horn"
formulas_name True False Horn = "Horn"
formulas_name False True Horn = "HO-Cond"
formulas_name False False Horn = "Cond"
formulas_name True True Atomic = "HO-Atom"
formulas_name True False Atomic = "Atom"
formulas_name False True Atomic = "HO-Eq"
formulas_name False False Atomic = "Eq"
sublogics_name :: HasCASL_Sublogics -> [String]
sublogics_name x = [
( if (has_sub x) then "Sub" else "")
++ ( if (has_part x) then "P" else "")
++ ( if (has_type_classes x) then "TyCl" else "")
++ ( if (has_polymorphism x) then "Poly" else "")
++ ( if (has_type_constructors x) then "TyCons" else "")
++ ( formulas_name (has_pred x) (has_ho x) (which_logic x) )
++ ( if (has_eq x) then "=" else "")]
------------------------------------------------------------------------------
-- min/join and max/meet functions
------------------------------------------------------------------------------
formulas_max :: HasCASL_Formulas -> HasCASL_Formulas -> HasCASL_Formulas
formulas_max x y = if (x<y) then y else x
formulas_min :: HasCASL_Formulas -> HasCASL_Formulas -> HasCASL_Formulas
formulas_min x y = if (x<y) then x else y
sublogics_max :: HasCASL_Sublogics -> HasCASL_Sublogics -> HasCASL_Sublogics
sublogics_max a b = HasCASL_SL
(has_sub a || has_sub b)
(has_part a || has_part b)
(has_eq a || has_eq b)
(has_pred a || has_pred b)
(has_ho a || has_ho b)
(has_type_classes a || has_type_classes b)
(has_polymorphism a || has_polymorphism b)
(has_type_constructors a || has_type_constructors b)
(formulas_max (which_logic a) (which_logic b))
sublogics_min :: HasCASL_Sublogics -> HasCASL_Sublogics -> HasCASL_Sublogics
sublogics_min a b = HasCASL_SL
(has_sub a && has_sub b)
(has_part a && has_part b)
(has_eq a && has_eq b)
(has_pred a && has_pred b)
(has_ho a && has_ho b)
(has_type_classes a && has_type_classes b)
(has_polymorphism a && has_polymorphism b)
(has_type_constructors a && has_type_constructors b)
(formulas_min (which_logic a) (which_logic b))
------------------------------------------------------------------------------
-- Helper functions
------------------------------------------------------------------------------
-- compute sublogics from a list of sublogics
--
comp_list :: [HasCASL_Sublogics] -> HasCASL_Sublogics
comp_list l = foldl sublogics_max bottom l
------------------------------------------------------------------------------
-- Functions to analyse formulae
------------------------------------------------------------------------------
{- ---------------------------------------------------------------------------
These functions are based on Till Mossakowski's paper "Sublanguages of
CASL", which is CoFI Note L-7. The functions implement an adaption of
the reduced grammar given there for formulae in a specific expression
logic by, checking whether a formula would match the productions from the
grammar. Which function checks for which nonterminal from the paper is
given as a comment before each function.
They are adapted for HasCASL, especially HasCASLs abstract syntax (As.hs)
--------------------------------------------------------------------------- -}
-- Atomic Logic (subsection 3.4 of the paper)
-- FORMULA, P-ATOM
--
is_atomic_t :: Term -> Bool
is_atomic_t (QuantifiedTerm q _ t _) = (is_atomic_q q) && (is_atomic_t t)
is_atomic_t (ApplTerm (QualOp Fun (InstOpId i _ _) t _) (TupleTerm ts _) _) =
-- P-Conjunction and ExEq
(((i == andId)
&& (and $ map is_atomic_t ts))
|| (i == exEq))
&& (t == logType)
&& (not (null ts))
is_atomic_t (QualOp Fun (InstOpId i _ _) t _) =
(i == trueId)
&& (t == logType)
--is_atomic_t (Predication _ _ _) = True
is_atomic_t (ApplTerm (QualOp Fun (InstOpId i _ _) t _) _ _) =
(i == defId)
&& (t == logType)
is_atomic_t _ = False
-- QUANTIFIER
--
is_atomic_q :: Quantifier -> Bool
is_atomic_q (Universal) = True
is_atomic_q _ = False
-- Positive Conditional Logic (subsection 3.2 in the paper)
-- FORMULA
--
is_horn_t :: Term -> Bool
is_horn_t (QuantifiedTerm q _ f _) =
(is_atomic_q q)
&& (is_horn_t f)
is_horn_t (ApplTerm (QualOp Fun (InstOpId i _ _) t _) (TupleTerm f _) _) =
(i == implId)
&& (t == logType)
&& (is_horn_p_conj (head f))
&& (is_horn_a (last f))
is_horn_t _ = False
-- P-CONJUNCTION
--
is_horn_p_conj :: Term -> Bool
is_horn_p_conj (ApplTerm (QualOp Fun (InstOpId i _ _) t _) (TupleTerm ts _) _) =
(i == andId)
&& (t == logType)
&& (not (null ts))
&& (and $ map is_horn_a ts)
is_horn_p_conj _ = False
-- ATOM
--
is_horn_a :: Term -> Bool
is_horn_a (QualOp Fun (InstOpId i _ _) t _) =
(i == trueId)
&& (t == logType)
-- is_horn_a (Predication _ _ _) = True
is_horn_a (ApplTerm (QualOp Fun (InstOpId i _ _) t _) _ _) =
((i == defId)
|| (i == exEq)
|| (i == eqId))
&& (t == logType)
--is_horn_a (Membership _ _ _) = True
is_horn_a _ = False
-- P-ATOM
--
is_horn_p_a :: Term -> Bool
is_horn_p_a (QualOp Fun (InstOpId i _ _) t _) =
(i == trueId)
&& (t == logType)
-- is_horn_p_a (Predication _ _ _) = True
is_horn_p_a (ApplTerm (QualOp Fun (InstOpId i _ _) t _) _ _) =
((i == defId)
|| (i == exEq))
&& (t == logType)
-- is_horn_p_a (Membership _ _ _) = True
is_horn_p_a _ = False
-- Generalized Positive Conditional Logic (subsection 3.3 of the paper)
-- FORMULA, ATOM
--
is_ghorn_t :: Term -> Bool
is_ghorn_t (QuantifiedTerm q _ t _) = (is_atomic_q q) && (is_ghorn_t t)
is_ghorn_t (ApplTerm (QualOp Fun (InstOpId i _ _) t _) (TupleTerm f _) _) =
(t == logType)
&& (((i == andId) && (not (null f)) && ((is_ghorn_c_conj f) || (is_ghorn_f_conj f)))
||
((i == implId) && (is_ghorn_prem (head f)) && (is_ghorn_conc (last f)))
||
((i == eqvId) && (is_ghorn_prem (head f)) && (is_ghorn_prem (last f))))
is_ghorn_t (QualOp Fun (InstOpId i _ _) t _) =
(i == trueId)
&& (t == logType)
-- is_ghorn_t (Predication _ _ _) = True
is_ghorn_t (ApplTerm (QualOp Fun (InstOpId i _ _) t _) _ _) =
((i == defId)
|| (i == exEq)
|| (i == eqId))
&& (t == logType)
-- is_ghorn_t (Membership _ _ _) = True
is_ghorn_t _ = False
-- C-CONJUNCTION
--
is_ghorn_c_conj :: [Term] -> Bool
is_ghorn_c_conj t = (not(null t)) && (and ((map is_ghorn_conc) t))
-- F-CONJUNCTION
--
is_ghorn_f_conj :: [Term] -> Bool
is_ghorn_f_conj t = (not(null t)) && (and ((map is_ghorn_t) t))
-- P-CONJUNCTION
--
is_ghorn_p_conj :: [Term] -> Bool
is_ghorn_p_conj t = (not(null t)) && (and (map is_ghorn_prem t))
-- PREMISE
--
is_ghorn_prem :: Term -> Bool
is_ghorn_prem (ApplTerm (QualOp Fun (InstOpId i _ _) t _) (TupleTerm ts _) _) =
(i == andId)
&& (t == logType)
&& (not (null ts))
&& (is_ghorn_p_conj ts)
is_ghorn_prem x = is_horn_p_a x
-- CONCLUSION
--
is_ghorn_conc :: Term -> Bool
is_ghorn_conc (ApplTerm (QualOp Fun (InstOpId i _ _) t _) (TupleTerm ts _) _) =
(i == andId)
&& (t == logType)
&& (not (null ts))
&& (is_ghorn_c_conj ts)
is_ghorn_conc x = is_horn_a x
is_fol_t :: Term -> Bool
is_fol_t _ = False
{- FOL:
no lambda/let/case,
no higher types (i.e. all types are basic, tuples, or tuple -> basic)
-}
-- compute logic of a formula by checking all logics in turn
--
get_logic :: Term -> HasCASL_Sublogics
get_logic t = if (is_atomic_t t) then bottom else
if (is_horn_t t) then need_horn else
if (is_ghorn_t t) then need_ghorn else
if (is_fol_t t) then need_fol else
need_hol
------------------------------------------------------------------------------
-- Functions to compute minimal sublogic for a given element; these work
-- by recursing into all subelements
------------------------------------------------------------------------------
sl_basicSpec :: BasicSpec -> HasCASL_Sublogics
sl_basicSpec (BasicSpec l) = comp_list $ map sl_basicItem
$ map item l
sl_basicItem :: BasicItem -> HasCASL_Sublogics
sl_basicItem (SigItems l) = sl_sigItems l
sl_basicItem (ProgItems l _) = comp_list $ map sl_progEq
$ map item l
sl_basicItem (ClassItems _ l _) = sublogics_max need_type_classes
(comp_list $ map sl_classItem
$ map item l)
sl_basicItem (GenVarItems l _) = comp_list $ map sl_genVarDecl l
sl_basicItem (FreeDatatype l _) = comp_list $ map sl_datatypeDecl
$ map item l
sl_basicItem (GenItems l _) = (comp_list $ map sl_sigItems
$ map item l)
sl_basicItem (AxiomItems l m _) = sublogics_max
(comp_list $ map sl_genVarDecl l)
(comp_list $ map sl_term
$ map item m)
sl_basicItem (Internal l _) = comp_list $ map sl_basicItem
$ map item l
sl_sigItems :: SigItems -> HasCASL_Sublogics
sl_sigItems (TypeItems i l _) = sublogics_max (sl_instance i)
(comp_list $ map sl_typeItem
$ map item l)
sl_sigItems (OpItems b l _) = sublogics_max (sl_opBrand b)
(comp_list $ map sl_opItem
$ map item l)
sl_opBrand :: OpBrand -> HasCASL_Sublogics
sl_opBrand (Pred) = need_pred
sl_opBrand _ = bottom
sl_instance :: Instance -> HasCASL_Sublogics
sl_instance (Instance) = need_type_classes
sl_instance _ = bottom
sl_classItem :: ClassItem -> HasCASL_Sublogics
sl_classItem (ClassItem _ l _) = comp_list $ map sl_basicItem
$ map item l
sl_typeItem :: TypeItem -> HasCASL_Sublogics
sl_typeItem (TypeDecl l _ _) = comp_list $ map sl_typePattern l
sl_typeItem (SubtypeDecl l _ _) = sublogics_max need_sub
(comp_list $ map sl_typePattern l)
sl_typeItem (IsoDecl l _) = sublogics_max need_sub
(comp_list $ map sl_typePattern l)
sl_typeItem (SubtypeDefn tp _ t term _) =
comp_list [need_sub,
(sl_typePattern tp),
(sl_type t),
(sl_term (item term))]
sl_typeItem (AliasType tp _ ts _) = sublogics_max (sl_typePattern tp)
(sl_typeScheme ts)
sl_typeItem (Datatype dDecl) = sl_datatypeDecl dDecl
sl_typePattern :: TypePattern -> HasCASL_Sublogics
sl_typePattern (TypePattern _ l _) = comp_list $ map sl_typeArg l
-- non-empty args --> type constructor!
sl_typePattern (MixfixTypePattern l) = comp_list $ map sl_typePattern l
sl_typePattern (BracketTypePattern _ l _) = comp_list $ map sl_typePattern l
sl_typePattern (TypePatternArg _ _) = need_polymorphism
sl_typePattern _ = bottom
sl_type :: Type -> HasCASL_Sublogics
sl_type (TypeName _ _ v) = if v /= 0 then need_polymorphism else bottom
sl_type (TypeAppl t1 t2) = comp_list [need_type_constructors,
(sl_type t1), (sl_type t2)]
sl_type (BracketType _ l _) = comp_list $ map sl_type l
sl_type (KindedType t _ _) = sl_type t
sl_type (ExpandedType _ t) = sl_type t
sl_type (MixfixType l) = comp_list $ map sl_type l
sl_type (LazyType t _) = sl_type t
sl_type (ProductType l _) = comp_list $ map sl_type l
sl_type (FunType t1 a t2 _) =
comp_list [need_ho, (sl_type t1), (sl_arrow a), (sl_type t2)]
sl_type (TypeToken _) = bottom
{- FOL:
no higher types (i.e. all types are basic, tuples, or tuple -> basic)
-}
sl_arrow :: Arrow -> HasCASL_Sublogics
sl_arrow (PFunArr) = need_part
sl_arrow (PContFunArr) = need_part
sl_arrow _ = bottom
sl_typeScheme :: TypeScheme -> HasCASL_Sublogics
sl_typeScheme (TypeScheme l (p :=> t) _) =
comp_list ((comp_list $ map sl_typeArg l) :
(comp_list $ map sl_pred p) :
case unalias t of
FunType t1 a t2 _ -> [(sl_type t1), (sl_arrow a), (sl_type t2)]
_ -> [sl_type t])
sl_pred :: Pred -> HasCASL_Sublogics
sl_pred (IsIn _ l) = sublogics_max need_type_classes
(comp_list $ map sl_type l)
sl_opItem :: OpItem -> HasCASL_Sublogics
sl_opItem (OpDecl l t m _) =
comp_list [(comp_list $ map sl_opId l),
(sl_typeScheme t),
(comp_list $ map sl_opAttr m)]
sl_opItem (OpDefn i v ts p t _) =
comp_list [(sl_opId i),
(comp_list $ map sl_varDecl (concat v)),
(sl_typeScheme ts),
(sl_partiality p),
(sl_term t)]
sl_partiality :: Partiality -> HasCASL_Sublogics
sl_partiality (Partial) = need_part
sl_partiality _ = bottom
sl_opAttr :: OpAttr -> HasCASL_Sublogics
sl_opAttr (UnitOpAttr t _) = sl_term t
sl_opAttr _ = need_eq
sl_datatypeDecl :: DatatypeDecl -> HasCASL_Sublogics
sl_datatypeDecl (DatatypeDecl t _ l c _) =
if (null c) then sublogics_max (sl_typePattern t)
(comp_list $ map sl_alternative
$ map item l)
else comp_list [need_type_classes,
(sl_typePattern t),
(comp_list $ map sl_alternative $ map item l)]
sl_alternative :: Alternative -> HasCASL_Sublogics
sl_alternative (Constructor _ l p _) =
comp_list [(sl_partiality p),
(comp_list $ map sl_component (concat l))]
sl_alternative (Subtype l _) = sublogics_max need_sub
(comp_list $ map sl_type l)
sl_component :: Component -> HasCASL_Sublogics
sl_component (Selector _ p t _ _) =
sublogics_max (sl_partiality p) (sl_type t)
sl_component (NoSelector t) = sl_type t
sl_term :: Term -> HasCASL_Sublogics
sl_term t = sublogics_max (get_logic t) (sl_t t)
sl_t :: Term -> HasCASL_Sublogics
sl_t (QualVar vd) = sl_varDecl vd
sl_t (QualOp b i t _) =
comp_list [(sl_opBrand b),
(sl_instOpId i),
(sl_typeScheme t)]
--sl_t (ResolvedMixTerm _ l _) = comp_list $ map sl_t l
sl_t (ApplTerm t1 t2 _) = sublogics_max (sl_t t1) (sl_t t2)
sl_t (TupleTerm l _) = comp_list $ map sl_t l
sl_t (TypedTerm t _ ty _) = sublogics_max (sl_t t) (sl_type ty)
sl_t (QuantifiedTerm _ l t _) = sublogics_max (sl_t t)
(comp_list $ map sl_genVarDecl l)
sl_t (LambdaTerm l p t _) =
comp_list [(comp_list $ map sl_pattern l),
(sl_partiality p),
(sl_t t)]
sl_t (CaseTerm t l _) = sublogics_max (sl_t t)
(comp_list $ map sl_progEq l)
sl_t (LetTerm _ l t _) = sublogics_max (sl_t t)
(comp_list $ map sl_progEq l)
sl_t (MixTypeTerm _ t _) = sl_type t
sl_t (MixfixTerm l) = comp_list $ map sl_t l
sl_t (BracketTerm _ l _) = comp_list $ map sl_t l
sl_t (AsPattern vd p2 _) = sublogics_max (sl_varDecl vd) (sl_pattern p2)
sl_t _ = bottom
sl_pattern :: Pattern -> HasCASL_Sublogics
sl_pattern = sl_t
sl_progEq :: ProgEq -> HasCASL_Sublogics
sl_progEq (ProgEq p t _) = sublogics_max (sl_pattern p) (sl_t t)
sl_varDecl :: VarDecl -> HasCASL_Sublogics
sl_varDecl (VarDecl _ t _ _) = sl_type t
sl_typeArg :: TypeArg -> HasCASL_Sublogics
sl_typeArg (TypeArg _ _ _ _) = need_polymorphism
sl_genVarDecl :: GenVarDecl -> HasCASL_Sublogics
sl_genVarDecl (GenVarDecl v) = sl_varDecl v
sl_genVarDecl (GenTypeVarDecl _) = need_polymorphism
sl_opId :: OpId -> HasCASL_Sublogics
sl_opId (OpId _ l _) = comp_list $ map sl_typeArg l
sl_instOpId :: InstOpId -> HasCASL_Sublogics
sl_instOpId (InstOpId i l _) =
if ((i == exEq) || (i == eqId))
then sublogics_max need_eq (comp_list $ map sl_type l)
else comp_list $ map sl_type l
sl_symbItems :: SymbItems -> HasCASL_Sublogics
sl_symbItems (SymbItems k l _ _) = sublogics_max (sl_symbKind k)
(comp_list $ map sl_symb l)
sl_symbMapItems :: SymbMapItems -> HasCASL_Sublogics
sl_symbMapItems (SymbMapItems k l _ _) = sublogics_max (sl_symbKind k)
(comp_list $ map sl_symbOrMap l)
sl_symbKind :: SymbKind -> HasCASL_Sublogics
sl_symbKind (SK_pred) = need_pred
sl_symbKind (SK_class) = need_type_classes
sl_symbKind _ = bottom
sl_symb :: Symb -> HasCASL_Sublogics
sl_symb (Symb _ Nothing _) = bottom
sl_symb (Symb _ (Just l) _) = sl_symbType l
sl_symbType :: SymbType -> HasCASL_Sublogics
sl_symbType (SymbType t) = sl_typeScheme t
sl_symbOrMap :: SymbOrMap -> HasCASL_Sublogics
sl_symbOrMap (SymbOrMap s Nothing _) = sl_symb s
sl_symbOrMap (SymbOrMap s (Just t) _) =
sublogics_max (sl_symb s) (sl_symb t)
-- the maps have no influence since all sorts,ops,preds in them
-- must also appear in the signatures, so any features needed by
-- them will be included by just checking the signatures
--
sl_env :: Env -> HasCASL_Sublogics
sl_env e =
let classes = if Map.isEmpty $ classMap e
then bottom else need_type_classes
types = comp_list $ map sl_typeInfo (Map.elems (typeMap e))
ops = comp_list $ map sl_opInfos (Map.elems (assumps e))
in comp_list [classes, types, ops]
sl_typeInfo :: TypeInfo -> HasCASL_Sublogics
sl_typeInfo t = sublogics_max (comp_list $ map sl_type (superTypes t))
(sl_typeDefn (typeDefn t))
sl_typeDefn :: TypeDefn -> HasCASL_Sublogics
sl_typeDefn (Supertype _ ts t) =
sublogics_max (sl_typeScheme ts) (sl_term t)
sl_typeDefn (DatatypeDefn de) = sl_dataEntry de
sl_typeDefn (AliasTypeDefn t) = sl_typeScheme t
sl_typeDefn (TypeVarDefn) = need_polymorphism
sl_typeDefn _ = bottom
sl_dataEntry :: DataEntry -> HasCASL_Sublogics
sl_dataEntry (DataEntry _ _ _ l m) =
sublogics_max (comp_list $ map sl_typeArg l)
(comp_list $ map sl_altDefn m)
sl_opInfos :: OpInfos -> HasCASL_Sublogics
sl_opInfos o = comp_list $ map sl_opInfo (opInfos o)
sl_opInfo :: OpInfo -> HasCASL_Sublogics
sl_opInfo o = comp_list [(sl_typeScheme (opType o)),
(comp_list $ map sl_opAttr (opAttrs o)),
(sl_opDefn (opDefn o))]
sl_opDefn :: OpDefn -> HasCASL_Sublogics
sl_opDefn (NoOpDefn b) = sl_opBrand b
sl_opDefn (SelectData l _) = comp_list $ map sl_constrInfo l
sl_opDefn (Definition b t) =
sublogics_max (sl_opBrand b) (sl_term t)
sl_opDefn _ = bottom
sl_constrInfo :: ConstrInfo -> HasCASL_Sublogics
sl_constrInfo c = sl_typeScheme (constrType c)
sl_sentence :: Sentence -> HasCASL_Sublogics
sl_sentence (Formula t) = sl_term t
sl_sentence (ProgEqSen _ ts pq) =
sublogics_max (sl_typeScheme ts) (sl_progEq pq)
sl_sentence (DatatypeSen l) = comp_list $ map sl_dataEntry l
sl_altDefn :: AltDefn -> HasCASL_Sublogics
sl_altDefn (Construct _ l p m) =
comp_list [(comp_list $ map sl_type l),
(sl_partiality p),
(comp_list $ map sl_selector $ concat m)]
sl_selector :: Selector -> HasCASL_Sublogics
sl_selector (Select _ t p) = sublogics_max (sl_type t)
(sl_partiality p)
sl_morphism :: Morphism -> HasCASL_Sublogics
sl_morphism m = sublogics_max (sl_env $ msource m) (sl_env $ mtarget m)
sl_symbol :: Symbol -> HasCASL_Sublogics
sl_symbol (Symbol _ t e) =
sublogics_max (sl_symbolType t) (sl_env e)
sl_symbolType :: SymbolType -> HasCASL_Sublogics
sl_symbolType (OpAsItemType t) = sl_typeScheme t
sl_symbolType (ClassAsItemType _) = need_type_classes
sl_symbolType _ = bottom
------------------------------------------------------------------------------
-- comparison functions
------------------------------------------------------------------------------
-- negated implication
--
nimpl :: Bool -> Bool -> Bool
nimpl True _ = True
nimpl False False = True
nimpl False True = False
-- check if a "new" sublogic is contained in/equal to a given
-- sublogic
--
sl_in :: HasCASL_Sublogics -> HasCASL_Sublogics -> Bool
sl_in given new = (nimpl (has_sub given) (has_sub new)) &&
(nimpl (has_part given) (has_part new)) &&
(nimpl (has_eq given) (has_eq new)) &&
(nimpl (has_pred given) (has_pred new)) &&
(nimpl (has_polymorphism given)
(has_polymorphism new)) &&
(nimpl (has_ho given) (has_ho new)) &&
(nimpl (has_type_classes given)
(has_type_classes new)) &&
(nimpl (has_type_constructors given)
(has_type_constructors new)) &&
((which_logic given) >= (which_logic new))
in_x :: HasCASL_Sublogics -> a -> (a -> HasCASL_Sublogics) -> Bool
in_x l x f = sl_in l (f x)
in_basicSpec :: HasCASL_Sublogics -> BasicSpec -> Bool
in_basicSpec l x = in_x l x sl_basicSpec
in_sentence :: HasCASL_Sublogics -> Sentence -> Bool
in_sentence l x = in_x l x sl_sentence
in_symbItems :: HasCASL_Sublogics -> SymbItems -> Bool
in_symbItems l x = in_x l x sl_symbItems
in_symbMapItems :: HasCASL_Sublogics -> SymbMapItems -> Bool
in_symbMapItems l x = in_x l x sl_symbMapItems
in_env :: HasCASL_Sublogics -> Env -> Bool
in_env l x = in_x l x sl_env
in_morphism :: HasCASL_Sublogics -> Morphism -> Bool
in_morphism l x = in_x l x sl_morphism
in_symbol :: HasCASL_Sublogics -> Symbol -> Bool
in_symbol l x = in_x l x sl_symbol